Motivated by increasing interest in electrochemical devices that include highly alkaline electrolytes, we investigated two force fields for potassium hydroxide (KOH) at high concentrations in water. The “FNB” model uses the SPC/E water model, while the “FHM” model uses the TIP4P/2005 water model. Here, we also developed parameters to describe zincate ions in these solutions. The density and viscosity of KOH using the FHM model are in better agreement with experiment than the values from the FNB model. Comparing the properties of the zincate solutions to the available experimental data, we find that both force fields agree reasonably well, although the FHM parameters give a better prediction of the viscosity. The developed force field parameters can be used in future simulations of zincate/KOH solutions in combination with other species of interest.
Here, using atomistic molecular dynamics simulations, we investigate the morphology and transport properties of a new family of fluorine-free terpolymers designed as proton-exchange membranes. Simulated random terpolymers consist of three monomers with a 5-carbon backbone with a phenylsulfonate, phenyl, or no pendant group and have ion exchange capacities (IECs) ranging from 1.06–4.14 mmol/g. At a hydration level of 9, cluster analysis reveals macrophase separation between water and terpolymers with IEC < 2.1 mmol/g and continuous, percolated hydrophilic and hydrophobic nanoscale domains at higher IECs. Channel width distribution analysis of the percolated morphologies revealed that more hydrophobic units produce less uniform channels. Decreasing the surface area per sulfonate group and increasing the fractal dimension of the hydrophilic domains correlate with increased water diffusivity, due to a more acidic interface and more isotropic water channels. Relative to the previously studied phenylsulfonate homopolymer, these terpolymers with lower IECs have only modestly lower water diffusion, and we anticipate other advantages related to processability.
Here, we perform all-atom molecular dynamics simulations of lithium triflate in 1,2-dimethoxyethane using six different literature force fields. This system is representative of many experimental studies of lithium salts in solvents and polymers. We show that multiple historically common force fields for lithium ions give qualitatively incorrect results when compared with those from experiments and quantum chemistry calculations. We illustrate the importance of correctly selecting force field parameters and give recommendations on the force field choice for lithium electrolyte applications.
This work explores the influence of blend composition, network architecture, and hydrogen bonding on the material properties of crosslinked epoxy networks, focusing on the glass transition temperature (Tg) and Young’s modulus (Y). We used coarse-grained molecular dynamics simulations to simulate varying compositions of stiff and flexible components in epoxy monomer blends with varying excess of curative. We find that, without hydrogen bonding, networks of any composition show a monotonically increasing Tg with decreasing excess curative, consistent with theory. In contrast, we find that when hydrogen bonding is introduced, the binary blend networks show significant enhancement in Tg for lightly crosslinked systems. This result contributes to an explanation of the anomalous Tg behavior observed experimentally in these systems. We further find that Y is generally enhanced by hydrogen bonds, especially below Tg, demonstrating that hydrogen bonding has a significant influence on mechanical properties and can allow access to other desirable dynamic behavior, especially self-healing.
Recent studies on off-stoichiometric thermosets reveal unique viscoelastic behavior derived from increased free volume and physical interactions between chain ends. To understand structural characteristics arising from cure and its effect on properties, we developed a Monte Carlo model based on step-growth polymerization. Our model accurately predicted structure-property trends for a two-component system of EPON 828 (EPON) and ethylenediamine. A second epoxy monomer, D.E.R. 732 (DER), was investigated to modulate Tg. Binary mixtures of EPON and DER in off-stoichiometric, amine-rich formulations resulted in nonlinear evolution of thermomechanical properties with respect to initial formulation stoichiometry. Modifying our model with kinetic parameters allowing for differential epoxide/amine reaction kinetics only partially accounted for trends in Tg, suggesting that spatiotemporal contributions─not captured by our model─were significant determinants of material properties compared to polymer architecture for three-component systems. These findings underpin the importance of spatial awareness in modeling to inform the development of dynamic thermosets.
Elastomeric rubbers serve a vital role as sealing materials in the hydrogen storage and transport infrastructure. With applications including O-rings and hose-liners, these components are exposed to pressurized hydrogen at a range of temperatures, cycling rates, and pressure extremes. Cyclic (de)pressurization is known to degrade these materials through the process of cavitation. This readily visible failure mode occurs as a fracture or rupture of the material and is due to the oversaturated gas localizing to form gas bubbles. Computational modeling in the Hydrogen Materials Compatibility Program (H-Mat), co-led by Sandia National Laboratories and Pacific Northwest National Laboratory, employs multi-scale simulation efforts to build a predictive understanding of hydrogen-induced damage in materials. Modeling efforts within the project aim to provide insight into how to formulate materials that are less sensitive to high-pressure hydrogen-induced failure. In this document, we summarize results from atomistic molecular dynamics simulations, which make predictive assessments of the effects of compositional variations in the commonly used elastomer, ethylene propylene diene monomer (EPDM).
Elastomeric rubber materials serve a vital role as sealing materials in the hydrogen storage and transport infrastructure. With applications including O-rings and hose liners, these components are exposed to pressurized hydrogen at a range of temperatures, cycling rates, and pressure extremes. High-pressure exposure and subsequent rapid decompression often lead to cavitation and stress-induced damage of the elastomer due to localization of the hydrogen gas. Here, we use all-atom classical molecular dynamics simulations to assess the impact of compositional variations on gas diffusion within the commonly used elastomer ethylene−propylene−diene monomer (EPDM). With the aim to build a predictive understanding of precursors to cavitation and to motivate material formulations that are less sensitive to hydrogen-induced failure, we perform systematic simulations of gas dynamics in EPDM as a function of temperature, gas concentration, and cross-link density. Our simulations reveal anomalous, subdiffusive hydrogen motion at pressure and intermediate times. We identify two groups of gas with different mobilities: one group exhibiting high mobility and one group exhibiting low mobility due to their motion being impeded by the polymer. With decreasing temperatures, the low-mobility group shows increased gas localization, the necessary precursor for cavitation damage in these materials. At lower temperatures, increasing cross-link density led to greater hydrogen gas mobility and a lower fraction of caged hydrogen, indicating that increasing cross-link density may reduce precursors to cavitation. Finally, we use a two-state kinetic model to determine the energetics associated with transitions between these two mobility states.
High-pressure storage and cyclic (de)pressurization of hydrogen gas is known to result in degradation and failure of gas canisters, hoses, linings, and O-rings as the relatively small hydrogen molecule can readily permeate most materials. Hence, identifying material compositions that are less susceptible to hydrogen-induced damage is of significant importance to the hydrogen energy infrastructure. Here, we use classical atomistic molecular dynamics simulations to study hydrogen exposed ethylene-propylene-diene monomer (EPDM) rubber, an elastomer typically used in O-rings. We make chemical modifications to the model by adjusting the crosslink density and report on gas solubility, diffusivity, and molecular restructuring in response to rapid decompression. Our simulations indicate that increases in crosslink density can reduce volumetric expansion during decompression and result in smaller free volume pore sizes. However, these favorable properties for sealing materials come with a tradeoff. At pressure, crosslinks introduce extra free volume, providing potential sites for gas localization, the precursor to cavitation-induced failure.
In alkaline zinc–manganese dioxide batteries, there is a need for selective polymeric separators that have good hydroxide ion conductivity but that prevent the transport of zincate (Zn(OH)4)2-. Here we investigate the nanoscale structure and hydroxide transport in two cationic polysulfones that are promising for these separators. We present the synthesis and characterization for a tetraethylammonium-functionalized polysulfone (TEA-PSU) and compare it to our previous work on an N-butylimidazolium-functionalized polysulfone (NBI-PSU). We perform atomistic molecular dynamics (MD) simulations of both polymers at experimentally relevant water contents. The MD simulations show that both polymers develop well phase separated nanoscale water domains that percolate through the polymer. Calculation of the total scattering intensity from the MD simulations reveal weak or nonexistent ionomer peaks at low wave vectors. The lack of an ionomer peak is due to a loss of contrast in the scattering. The small water domains in both polymers, with median diameters on the order of 0.5–0.7 nm, lead to hydroxide and water diffusion constants that are 1–2 orders of magnitude smaller than their values in bulk water. This confinement lowers the conductivity but also may explain the strong exclusion of zincate from the PSU membranes seen experimentally.
Designing polymers with controlled nanoscale morphologies and scalable synthesis is of great interest in the development of fluorine-free materials for proton-exchange membranes in fuel cells. This study focuses on a precision polyethylene with phenylsulfonic acid branches at every fifth carbon, p5PhSA, with a high ion-exchange capacity (4.2 mmol/g). The polymers self-assemble into hydrophilic and hydrophobic co-continuous nanoscale domains. In the hydrated state, the hydrophilic domain, composed of polar sulfonic acid moieties and water, serves as a pathway for efficient mesoscopic proton conductivity. The morphology and proton transport of p5PhSA are evaluated under hydrated conditions using in situ X-ray scattering and electrochemical impedance spectroscopy techniques. At 40 °C and 95% relative humidity, the proton conductivity of p5PhSA is 0.28 S/cm, which is four times greater than Nafion 117 under the same conditions. Atomistic molecular dynamics (MD) simulations are also used to elucidate the interplay between the structure and the water dynamics. The MD simulations show strong nanophase separation between the percolated hydrophilic and hydrophobic domains over a wide range of water contents. The percolated hydrophilic nanoscale domain facilitates the rapid proton transport in p5PhSA and demonstrates the potential of precise hydrocarbon-based polymers as processible and effective proton-exchange membranes.