Publications

100 Results
Skip to search filters

Degree of Freedom Selection Approaches for MIMO Vibration Test Design

Conference Proceedings of the Society for Experimental Mechanics Series

Beale, Christopher B.; Schultz, Ryan S.; Smith, Chandler B.; Walsh, Timothy W.

Multiple Input Multiple Output (MIMO) vibration testing provides the capability to expose a system to a field environment in a laboratory setting, saving both time and money by mitigating the need to perform multiple and costly large-scale field tests. However, MIMO vibration test design is not straightforward oftentimes relying on engineering judgment and multiple test iterations to determine the proper selection of response Degree of Freedom (DOF) and input locations that yield a successful test. This work investigates two DOF selection techniques for MIMO vibration testing to assist with test design, an iterative algorithm introduced in previous work and an Optimal Experiment Design (OED) approach. The iterative-based approach downselects the control set by removing DOF that have the smallest impact on overall error given a target Cross Power Spectral Density matrix and laboratory Frequency Response Function (FRF) matrix. The Optimal Experiment Design (OED) approach is formulated with the laboratory FRF matrix as a convex optimization problem and solved with a gradient-based optimization algorithm that seeks a set of weighted measurement DOF that minimize a measure of model prediction uncertainty. The DOF selection approaches are used to design MIMO vibration tests using candidate finite element models and simulated target environments. The results are generalized and compared to exemplify the quality of the MIMO test using the selected DOF.

More Details

Sierra/SD - Theory Manual (V.5.10)

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - User's Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD: Verification Test Manual - 5.10

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Support Vector Machines for Estimating Decision Boundaries with Numerical Simulations

Walsh, Timothy W.; Aquino, Wilkins A.; Kurzawski, Andrew K.; McCormick, Cameron M.; Sanders, Clay M.; Smith, Chandler B.; Treweek, Benjamin T.

Many engineering design problems can be formulated as decisions between two possible options. This is the case, for example, when a quantity of interest must be maintained below or above some threshold. The threshold thereby determines which input parameters lead to which option, and creates a boundary between the two options known as the decision boundary. This report details a machine learning approach for estimating decision boundaries, based on support vector machines (SVMs), that is amenable to large scale computational simulations. Because it is computationally expensive to evaluate each training sample, the approach iteratively estimates the decision boundary in a manner that requires relatively few training samples to glean useful estimates. The approach is then demonstrated on three example problems from structural mechanics and heat transport.

More Details

Inverse Methods - Users Manual 5.8

Walsh, Timothy W.

The inverse methods team provides a set of tools for solving inverse problems in structural dynamics and thermal physics, and also sensor placement optimization via Optimal Experimental Design (OED). These methods are used for designing experiments, model calibration, and verification/validation analysis of weapons systems. This document provides a user’s guide to the input for the three apps that are supported for these methods. Details of input specifications, output options, and optimization parameters are included.

More Details

Sierra/SD - Theory Manual - 5.8

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

More Details

Sierra/SD - How To Manual - 5.8

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Inverse Methods - Users Manual 5.6

Walsh, Timothy W.; Akcelik, Volkan A.; Aquino, Wilkins A.; McCormick, Cameron M.; Sanders, Clay M.; Treweek, Benjamin T.; Kurzawski, Andrew K.; Smith, Chandler B.

The inverse methods team provides a set of tools for solving inverse problems in structural dynamics and thermal physics, and also sensor placement optimization via Optimal Experimental Design (OED). These methods are used for designing experiments, model calibration, and verfication/validation analysis of weapons systems. This document provides a user's guide to the input for the three apps that are supported for these methods. Details of input specifications, output options, and optimization parameters are included.

More Details

On the broadband vibration isolation performance of nonlocal total-internal-reflection metasurfaces

Journal of Sound and Vibration

Zhu, Hongfei; Walsh, Timothy W.; Jared, Bradley H.; Semperlotti, Fabio

The concept of a nonlocal elastic metasurface has been recently proposed and experimentally demonstrated in Zhu et al. (2020). When implemented in the form of a total-internal-reflection (TIR) interface, the metasurface can act as an elastic wave barrier that is impenetrable to deep subwavelength waves over an exceptionally wide frequency band. The underlying physical mechanism capable of delivering this broadband subwavelength performance relies on an intentionally nonlocal design that leverages long-range connections between the units forming the fundamental supercell. This paper explores the design and application of a nonlocal TIR metasurface to achieve broadband passive vibration isolation in a structural assembly made of multiple dissimilar elastic waveguides. The specific structural system comprises shell, plate, and beam waveguides, and can be seen as a prototypical structure emulating mechanical assemblies of practical interest for many engineering applications. The study also reports the results of an experimental investigation that confirms the significant vibration isolation capabilities afforded by the embedded nonlocal TIR metasurface. These results are particularly remarkable because they show that the performance of the nonlocal metasurface is preserved when applied to a complex structural assembly and under non-ideal incidence conditions of the incoming wave, hence significantly extending the validity of the results presented in Zhu et al. (2020). Results also confirm that, under proper conditions, the original concept of a planar metasurface can be morphed into a curved interface while still preserving full wave control capabilities.

More Details

Sierra/SD - Verification Test Manual - 5.6

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - Theory Manual - 5.6

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - How To Manual - 5.6

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - Verification Test Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - User's Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Theory Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - How To Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Exploring wave propagation in heterogeneous metastructures using the relaxed micromorphic model

Journal of the Mechanics and Physics of Solids

Alberdi, Ryan A.; Robbins, Joshua R.; Walsh, Timothy W.; Dingreville, Remi P.

Metamaterials are artificial structures that can manipulate and control sound waves in ways not possible with conventional materials. While much effort has been undertaken to widen the bandgaps produced by these materials through design of heterogeneities within unit cells, comparatively little work has considered the effect of engineering heterogeneities at the structural scale by combining different types of unit cells. In this paper, we use the relaxed micromorphic model to study wave propagation in heterogeneous metastructures composed of different unit cells. We first establish the efficacy of the relaxed micromorphic model for capturing the salient characteristics of dispersive wave propagation through comparisons with direct numerical simulations for two classes of metamaterial unit cells: namely phononic crystals and locally resonant metamaterials. We then use this model to demonstrate how spatially arranging multiple unit cells into metastructures can lead to tailored and unique properties such as spatially-dependent broadband wave attenuation, rainbow trapping, and pulse shaping. In the case of the broadband wave attenuation application, we show that by building layered metastructures from different metamaterial unit cells, we can slow down or stop wave packets in an enlarged frequency range, while letting other frequencies through. In the case of the rainbow-trapping application, we show that spatial arrangements of different unit cells can be designed to progressively slow down and eventually stop waves with different frequencies at different spatial locations. Finally, in the case of the pulse-shaping application, our results show that heterogeneous metastructures can be designed to tailor the spatial profile of a propagating wave packet. Collectively, these results show the versatility of the relaxed micromorphic model for effectively and accurately simulating wave propagation in heterogeneous metastructures, and how this model can be used to design heterogeneous metastructures with tailored wave propagation functionalities.

More Details

Sierra/SD - User's Manual (V.5.2)

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Hardesty, Sean H.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Theory Manual - 5.2

Stevens, B.L.; Crane, Nathan K.; Lindsay, Payton L.; Day, David M.; Walsh, Timothy W.; Dohrmann, Clark R.; Hardesty, Sean H.; Bunting, Gregory B.; Smith, Chandler B.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - How To Manual - 5.2

Stevens, B.L.; Crane, Nathan K.; Lindsay, Payton L.; Hardesty, Sean H.; Day, David M.; Dohrmann, Clark R.; Bunting, Gregory B.; Walsh, Timothy W.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - Verification Test Manual - 5.2

Stevens, B.L.; Crane, Nathan K.; Lindsay, Payton L.; Day, David M.; Dohrmann, Clark R.; Hardesty, Sean H.; Bunting, Gregory B.; Walsh, Timothy W.; Smith, Chandler B.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Multimode Metastructures: Novel Hybrid 3D Lattice Topologies

Boyce, Brad B.; Garland, Anthony G.; White, Benjamin C.; Jared, Bradley H.; Conway, Kaitlynn C.; Adstedt, Katerina A.; Dingreville, Remi P.; Robbins, Joshua R.; Walsh, Timothy W.; Alvis, Timothy A.; Branch, Brittany A.; Kaehr, Bryan J.; Kunka, Cody; Leathe, Nicholas L.

With the rapid proliferation of additive manufacturing and 3D printing technologies, architected cellular solids including truss-like 3D lattice topologies offer the opportunity to program the effective material response through topological design at the mesoscale. The present report summarizes several of the key findings from a 3-year Laboratory Directed Research and Development Program. The program set out to explore novel lattice topologies that can be designed to control, redirect, or dissipate energy from one or multiple insult environments relevant to Sandia missions, including crush, shock/impact, vibration, thermal, etc. In the first 4 sections, we document four novel lattice topologies stemming from this study: coulombic lattices, multi-morphology lattices, interpenetrating lattices, and pore-modified gyroid cellular solids, each with unique properties that had not been achieved by existing cellular/lattice metamaterials. The fifth section explores how unintentional lattice imperfections stemming from the manufacturing process, primarily sur face roughness in the case of laser powder bed fusion, serve to cause stochastic response but that in some cases such as elastic response the stochastic behavior is homogenized through the adoption of lattices. In the sixth section we explore a novel neural network screening process that allows such stocastic variability to be predicted. In the last three sections, we explore considerations of computational design of lattices. Specifically, in section 7 using a novel generative optimization scheme to design novel pareto-optimal lattices for multi-objective environments. In section 8, we use computational design to optimize a metallic lattice structure to absorb impact energy for a 1000 ft/s impact. And in section 9, we develop a modified micromorphic continuum model to solve wave propagation problems in lattices efficiently.

More Details

Risk-Adaptive Experimental Design for High-Consequence Systems: LDRD Final Report

Kouri, Drew P.; Jakeman, John D.; Huerta, Jose G.; Walsh, Timothy W.; Smith, Chandler B.; Uryasev, Stan U.

Constructing accurate statistical models of critical system responses typically requires an enormous amount of data from physical experiments or numerical simulations. Unfortunately, data generation is often expensive and time consuming. To streamline the data generation process, optimal experimental design determines the 'best' allocation of experiments with respect to a criterion that measures the ability to estimate some important aspect of an assumed statistical model. While optimal design has a vast literature, few researchers have developed design paradigms targeting tail statistics, such as quantiles. In this project, we tailored and extended traditional design paradigms to target distribution tails. Our approach included (i) the development of new optimality criteria to shape the distribution of prediction variances, (ii) the development of novel risk-adapted surrogate models that provably overestimate certain statistics including the probability of exceeding a threshold, and (iii) the asymptotic analysis of regression approaches that target tail statistics such as superquantile regression. To accompany our theoretical contributions, we released implementations of our methods for surrogate modeling and design of experiments in two complementary open source software packages, the ROL/OED Toolkit and PyApprox.

More Details

Directional infrasound sensing using acoustic metamaterials

Journal of the Acoustical Society of America

Rouse, Jerry W.; Bowman, Daniel B.; Walsh, Timothy W.

Natural and anthropogenic infrasound may travel vast distances, making it an invaluable resource for monitoring phenomena such as nuclear explosions, volcanic eruptions, severe storms, and many others. Typically, these waves are captured using pressure sensors, which cannot encode the direction of arrival—critical information when the source location is not known beforehand. Obtaining this information therefore requires arrays of sensors with apertures ranging from tens of meters to kilometers depending on the wavelengths of interest. This is often impractical in locations that lack the necessary real estate (urban areas, rugged regions, or remote islands); in any case, it requires multiple power, digitizer, and telemetry deployments. Here, the theoretical basis behind a compact infrasound direction of arrival sensor based on the acoustic metamaterials is presented. This sensor occupies a footprint that is orders of magnitude smaller than the span of a typical infrasound array. The diminutive size of the unit greatly expands the locations where it can be deployed. The sensor design is described, its ability to determine the direction of arrival is evaluated, and further avenues of study are suggested.

More Details

Sierra/SD - User's Manual

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Theory Manual

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User’s Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user’s notes and of course the material in the open literature.

More Details

Sierra/SD – Verification Test Manual – 5.0

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Massively Parallel Capability in Sierra/SD for Simulation Vibration with Piezoelectrics

Bunting, Gregory B.; Smith, Chandler B.; Walsh, Timothy W.

Sierra/SD is an engineering structural dynamics code that provides Sandia and other customers a tool to model structural and acoustic physics on large complex physical systems using massively parallel processing. This report provides a detailed overview on Sierra/SD’s most recent physics package: coupled electro-mechanical physics. This capability uses the finite element method to model coupled electro-mechanical physics exhibited by piezoelectric materials. This report provides an applications overview, theory overview, and verification examples demonstrating the electro-mechanical physics modeling capabilities of Sierra/SD.

More Details

Sierra/SD - How To Manual, 5.0

Bunting, Gregory B.; Crane, Nathan K.; Day, David B.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The “how to” document guides the user through complicated aspects of software usage. It should supplement both the User’s manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here – see the User’s manual for this. All the examples in the “How To” document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

An error-in-constitutive equations strategy for topology optimization for frequency-domain dynamics

Computer Methods in Applied Mechanics and Engineering

Sanders, Clay M.; Norato, Julián; Walsh, Timothy W.; Aquino, Wilkins A.

This paper presents a topology optimization formulation for frequency-domain dynamics to reduce solution dependence upon initial guess and considered loading conditions. Due to resonance phenomena in undamped steady-state dynamics, objectives measuring dynamic response possess many local minima that may represent poor solutions to a design problem, an issue exacerbated for design with respect to multiple frequencies. We propose an extension of the modified error-in-constitutive-equations (MECE) method, used previously in material identification inverse problems, as a new approach for frequency-domain dynamics topology optimization to mitigate these issues. The main idea of the proposed framework is to incorporate an additional penalty-like term in the objective function that measures the discrepancy in the constitutive relations between stresses and strains and between inertial forces and displacements. Then, the design problem is cast within a PDE-constrained optimization formulation in which we seek displacements, stresses, inertial forces, and a density-field solution that minimize our new objective subject to conservation of linear momentum plus some additional constraints. We show that this approach yields superior designs to conventional gradient-based optimization approaches that solely use a functional of displacements as the objective, while strictly enforcing the constitutive equations. The MECE strategy integrates into a density-based topology optimization scheme for void–solid or two-phase material structural design. We highlight the merits of our approach in a variety of scenarios for direct frequency response design, considering multiple frequency load cases and structural objectives.

More Details

A Generalized Stress Inversion Approach with Application to Residual Stress Estimation

Journal of Applied Mechanics, Transactions ASME

Chen, Mark J.; Aquino, Wilkins A.; Walsh, Timothy W.; Reu, Phillip L.; Johnson, Kyle J.; Rouse, Jerry W.; Jared, Bradley H.; Bishop, Joseph E.

We develop a generalized stress inversion technique (or the generalized inversion method) capable of recovering stresses in linear elastic bodies subjected to arbitrary cuts. Specifically, given a set of displacement measurements found experimentally from digital image correlation (DIC), we formulate a stress estimation inverse problem as a partial differential equation-constrained optimization problem. We use gradient-based optimization methods, and we accordingly derive the necessary gradient and Hessian information in a matrix-free form to allow for parallel, large-scale operations. By using a combination of finite elements, DIC, and a matrix-free optimization framework, the generalized inversion method can be used on any arbitrary geometry, provided that the DIC camera can view a sufficient part of the surface. We present numerical simulations and experiments, and we demonstrate that the generalized inversion method can be applied to estimate residual stress.

More Details

Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality

Proceedings of the National Academy of Sciences of the United States of America

Zhu, Hongfei; Patnaika, Sansit; Walsh, Timothy W.; Jared, Bradley H.; Semperlotti, Fabio

While elastic metasurfaces offer a remarkable and very effective approach to the subwavelength control of stress waves, their use in practical applications is severely hindered by intrinsically narrow band performance. In applications to electromagnetic and photonic metamaterials, some success in extending the operating dynamic range was obtained by using nonlocality. However, while electronic properties in natural materials can show significant nonlocal effects, even at the macroscales, in mechanics, nonlocality is a higher-order effect that becomes appreciable only at the microscales. This study introduces the concept of intentional nonlocality as a fundamental mechanism to design passive elastic metasurfaces capable of an exceptionally broadband operating range. The nonlocal behavior is achieved by exploiting nonlocal forces, conceptually akin to long-range interactions in nonlocal material microstructures, between subsets of resonant unit cells forming the metasurface. These long-range forces are obtained via carefully crafted flexible elements, whose specific geometry and local dynamics are designed to create remarkably complex transfer functions between multiple units. The resulting nonlocal coupling forces enable achieving phase-gradient profiles that are functions of the wavenumber of the incident wave. The identification of relevant design parameters and the assessment of their impact on performance are explored via a combination of semianalytical and numerical models. The nonlocal metasurface concept is tested, both numerically and experimentally, by embedding a total-internal-reflection design in a thin-plate waveguide. Results confirm the feasibility of the intentionally nonlocal design concept and its ability to achieve a fully passive and broadband wave control.

More Details

Sierra/SD-- How To Manual - 4.58

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The “how to” document is designed to help walk the analyst through difficult aspects of software usage. It should supplement both the User’s manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here – see the User’s manual for this. All the examples in the “How To” document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

Sierra/SD–Verification Test Manual - 4.58

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Transient and Steady-State Inverse Problems in Sierra/Aria

Wagman, Ellen B.; Kurzawski, Andrew K.; Bunting, Gregory B.; Walsh, Timothy W.; Aquino, Wilkins A.; Brunini, Victor B.

Inverse problems arise in a wide range of applications, whenever unknown model parameters cannot be measured directly. Instead, the unknown parameters are estimated using experimental data and forward simulations. Thermal inverse problems, such as material characterization problems, are often large-scale and transient. Therefore, they require intrusive adjoint-based gradient implementations in order to be solved efficiently. The capability to solve large-scale transient thermal inverse problems using an adjoint-based approach was recently implemented in SNL Sierra Mechanics, a massively parallel capable multiphysics code suite. This report outlines the theory, optimization formulation, and path taken to implement thermal inverse capabilities in Sierra within a unit test framework. The capability utilizes Sierra/Aria and Sierra/Fuego data structures, the Rapid Optimization Library, and an interface to the Sierra/InverseOpt library. The existing Sierra/Aria time integrator is leveraged to implement a time-dependent adjoint solver.

More Details

Development of a Generalized Residual Stress Inversion Technique

Johnson, Kyle J.; Bishop, Joseph E.; Reu, Phillip L.; Walsh, Timothy W.; Farias, Paul A.; Jared, Bradley H.; Susan, D.F.; Rouse, Jerry W.; Whetten, Shaun R.; Chen, Mark J.; Aquino, Wilkins A.; Bellotti, Aurelio B.; Jacobs, Laurence J.

Residual stress is a common result of manufacturing processes, but it is one that is often overlooked in design and qualification activities. There are many reasons for this oversight, such as lack of observable indicators and difficulty in measurement. Traditional relaxation-based measurement methods use some type of material removal to cause surface displacements, which can then be used to solve for the residual stresses relieved by the removal. While widely used, these methods may offer only individual stress components or may be limited by part or cut geometry requirements. Diffraction-based methods, such as X-ray or neutron, offer non-destructive results but require access to a radiation source. With the goal of producing a more flexible solution, this LDRD developed a generalized residual stress inversion technique that can recover residual stresses released by all traction components on a cut surface, with much greater freedom in part geometry and cut location. The developed method has been successfully demonstrated on both synthetic and experimental data. The project also investigated dislocation density quantification using nonlinear ultrasound, residual stress measurement using Electronic Speckle Pattern Interferometry Hole Drilling, and validation of residual stress predictions in Additive Manufacturing process models.

More Details

Experimental study of vibration isolation in thin-walled structural assemblies with embedded total-internal-reflection metasurfaces

Journal of Sound and Vibration

Zhu, Hongfei; Walsh, Timothy W.; Semperlotti, Fabio

The concept of total-internal-reflection elastic metasurface (TIR-MS)was recently proposed [1]and employed within flexible planar waveguides in order to create highly subwavelength sound-hard barriers impenetrable to low frequency elastic waves. The underlying physical mechanism relies on the design of engineered interfaces exhibiting extreme phase gradients such that any incoming wave at, approximately, any incidence will experience total-internal-reflection conditions. At the design frequency, the metasurface exhibits a large phase gradient such that, in accordance with the generalized Snell's law, the first critical angle is virtually always exceeded. It is worth noting that in practical realizations, the actual total reflection performance might vary depending on the angle of incidence. This dependence is due to the discrete implementation of the metasurface which results in diffraction effects. This paper presents the results of an experimental study that explores the vibration isolation performance of TIR-MS when applied to structures made of complex combinations of different elastic waveguides (e.g. bolted assemblies of beams, plates, and shells). Such system can be seen as a prototypical structure emulating mechanical assemblies of practical interest for many engineering applications. Experimental results confirm that, when the TIR-MS is embedded in the host waveguide, significant vibration isolation capabilities are achieved under quasi-omnidirectional incidence and highly subwavelength excitation conditions (i.e. the ratio of the operating wavelength to the width of the TIR-MS is approximately 5.25). These experimental results suggest new interesting directions to achieve vibration isolation and mechanical energy filtering for practical engineering systems.

More Details

A gradient-based optimization approach for the detection of partially connected surfaces using vibration tests

Computer Methods in Applied Mechanics and Engineering

Aquino, Wilkins A.; Bunting, Gregory B.; Miller, Scott T.; Walsh, Timothy W.

The integrity of engineering structures is often compromised by embedded surfaces that result from incomplete bonding during the manufacturing process, or initiation of damage from fatigue or impact processes. Examples include delaminations in composite materials, incomplete weld bonds when joining two components, and internal crack planes that may form when a structure is damaged. In many cases the areas of the structure in question may not be easily accessible, thus precluding the direct assessment of structural integrity. In this paper, we present a gradient-based, partial differential equation (PDE)-constrained optimization approach for solving the inverse problem of interface detection in the context of steady-state dynamics. An objective function is defined that represents the difference between the model predictions of structural response at a set of spatial locations, and the experimentally measured responses. One of the contributions of our work is a novel representation of the design variables using a density field that takes values in the range [0,1]andraised and raised to an integer exponent that promotes solutions to be near the extrema of the range. The density field is combined with the penalty method for enforcing a zero gap condition and realizing partially bonded surfaces. The use of the penalty method with a density field representation leads to objective functions that are continuously differentiable with respect to the unknown parameters, enabling the use of efficient gradient-based optimization algorithms. Numerical examples of delaminated plates are presented to demonstrate the feasibility of the approach.

More Details

Inverse methods for characterization of contact areas in mechanical systems

Conference Proceedings of the Society for Experimental Mechanics Series

Fronk, Matthew; Eschen, Kevin; Starkey, Kyle; Kuether, Robert J.; Brink, Adam R.; Walsh, Timothy W.; Aquino, Wilkins A.; Brake, Matthew

In computational structural dynamics problems, the ability to calibrate numerical models to physical test data often depends on determining the correct constraints within a structure with mechanical interfaces. These interfaces are defined as the locations within a built-up assembly where two or more disjointed structures are connected. In reality, the normal and tangential forces arising from friction and contact, respectively, are the only means of transferring loads between structures. In linear structural dynamics, a typical modeling approach is to linearize the interface using springs and dampers to connect the disjoint structures, then tune the coefficients to obtain sufficient accuracy between numerically predicted and experimentally measured results. This work explores the use of a numerical inverse method to predict the area of the contact patch located within a bolted interface by defining multi-point constraints. The presented model updating procedure assigns contact definitions (fully stuck, slipping, or no contact) in a finite element model of a jointed structure as a function of contact pressure computed from a nonlinear static analysis. The contact definitions are adjusted until the computed modes agree with experimental test data. The methodology is demonstrated on a C-shape beam system with two bolted interfaces, and the calibrated model predicts modal frequencies with <3% total error summed across the first six elastic modes.

More Details

Comparison of time-domain objective functions in dynamic fixture optimization

Conference Proceedings of the Society for Experimental Mechanics Series

Starr, Michael J.; Walsh, Timothy W.

Differences in impedance are usually observed when components are tested in fixtures at lower levels of assembly from those in which they are fielded. In this work, the Kansas City National Security Campus (KCNSC) test bed hardware geometry is used to explore the sensitivity of the form of the objective function on the adequate reproduction of relevant response characteristics at the next level of assembly. Inverse methods within Sandia National Laboratories’ Sierra/SD code suite along with the Rapid Optimization Library (ROL) are used for identifying an unknown material (variable shear and bulk modulus) distributed across a predefined fixture volume. Comparisons of the results between time-domain based objective functions are presented. The development of the objective functions, solution sensitivity, and solution convergence will be discussed in the context of the practical considerations required for creating a realizable set of test hardware based on the variable-modulus optimized solutions.

More Details

Total-internal-reflection elastic metasurfaces: Design and application to structural vibration isolation

Applied Physics Letters

Zhu, Hongfei; Walsh, Timothy W.; Semperlotti, Fabio

This letter presents the concept of the Total Internal Reflection metasurface (TIR-MS) which supports the realization of structure-embedded subwavelength acoustic shields for elastic waves propagating in thin waveguides. The proposed metasurface design exploits extreme phase gradients, implemented via locally resonant elements, in order to achieve operating conditions that are largely beyond the critical angle. Such artificial discontinuity is capable of producing complete reflection of the incoming waves regardless of the specific angle of incidence. From a practical perspective, the TIR-MS behaves as a sound hard barrier that is impenetrable to long-wavelength modes at a selected frequency. The TIR metasurface concept is first conceived for a flat interface embedded in a rectangular waveguide and designed to block longitudinal S0-type guided modes. Then, it is extended to circular plates in order to show how enclosed areas can be effectively shielded by incoming waves. Given the same underlying physics, an equivalent dynamic behavior was also numerically and experimentally illustrated for flexural A0-type guided modes. This study shows numerical and experimental evidence that, when the metasurface is excited at the target frequency, significant vibration isolation can be achieved in the presence of waves having any arbitrary angle of incidence. These results open interesting paths to achieve vibration isolation and energy filtering in certain prototypical structures of interest for practical engineering applications.

More Details

Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains

Journal of Computational Acoustics

Bunting, Gregory B.; Prakash, Arun; Walsh, Timothy W.; Dohrmann, Clark R.

Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and how this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this paper, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. This provides an additional advantage of PML over the infinite element approach.

More Details

Design of continuously graded elastic acoustic cloaks

Journal of the Acoustical Society of America

Sanders, Clay M.; Aquino, Wilkins A.; Walsh, Timothy W.

This letter demonstrates the design of continuously graded elastic cylinders to achieve passive cloaking from harmonic acoustic excitation, both at single frequencies and over extended bandwidths. The constitutive parameters in a multilayered, constant-density cylinder are selected in a partial differential equation-constrained optimization problem, such that the residual between the pressure field from an unobstructed spreading wave in a fluid and the pressure field produced by the cylindrical inclusion is minimized. The radial variation in bulk modulus appears fundamental to the cloaking behavior, while the shear modulus distribution plays a secondary role. Such structures could be realized with functionally-graded elastic materials.

More Details

Evaluation of microphone density for finite element source inversion simulation of a laboratory acoustic test

Conference Proceedings of the Society for Experimental Mechanics Series

Schultz, Ryan S.; Walsh, Timothy W.

Simulation of the response of a system to an acoustic environment is desirable in the assessment of aerospace structures in flight-like environments. In simulating a laboratory acoustic test a large challenge is modeling the as-tested acoustic field. Acoustic source inversion capabilities in Sandia’s Sierra/SD structural dynamics code have allowed for the determination of an acoustic field based on measured microphone responses—given measured pressures, source inversion optimization algorithms determine the input parameters of a set of acoustic sources defined in an acoustic finite element model. Inherently, the resulting acoustic field is dependent on the target microphone data. If there are insufficient target points, then the as-tested field may not be recreated properly. Here, the question of number of microphones is studied using synthetic data, that is, target data taken from a previous simulation which allows for comparison of the full pressure field—an important benefit not available with test data. By exploring a range of target points distributed throughout the domain, a rate of convergence to the true field can be observed. Results will be compared with the goal of developing guidelines for the number of sensors required to aid in the design of future laboratory acoustic tests to be used for model assessment.

More Details

Inversion for Eigenvalues and Modes Using Sierra-SD and ROL

Walsh, Timothy W.; Aquino, Wilkins A.; Ridzal, Denis R.; Kouri, Drew P.

In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.

More Details

Viscoelastic material inversion using Sierra-SD and ROL

Walsh, Timothy W.; Aquino, Wilkins A.; Ridzal, Denis R.; Kouri, Drew P.; van Bloemen Waanders, Bart G.; Urbina, Angel U.

In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

More Details
100 Results
100 Results