Publications

59 Results
Skip to search filters

Additive Manufacturing of MITL's and Convolutes

Rose, Charles; Whetten, Shaun R.; Mahaffey, Jacob T.; Simpson, Sean S.; Saiz, David J.; Puckett, Raymond V.

Stockpile stewardship requires accurate and predictive models relying on the generation of extreme environments which is both incredibly difficult and profoundly necessary. Next generation pulsed power facilities (NGPPF), where these environments are created, may require a paradigm shift in equipment engineering/manufacture to fulfill this need. Therefore, this research aims to investigate the limitations, capabilities and efficacy of leveraging advancements in the field of additive manufacturing (AM) in order to produce novel power flow components for NGPPFs. This work focused on commercial 3D metal AM equipment producing several prototypes addressing prescient needs/shortcomings, and a technique wherein a lightweight polymer core is metalized. Ultimately, commercial 3D metal AM is considered a viable path forward but would require a sizeable investment and does not currently support the scale and complexity necessary for NGPPFs. Moreover, initial results from our composite technique are promising and is considered a realizable path forward given further investigation.

More Details

High-throughput additive manufacturing and characterization of refractory high entropy alloys

Applied Materials Today

Melia, Michael A.; Whetten, Shaun R.; Puckett, Raymond V.; Jones, Morgan J.; Heiden, Michael J.; Argibay, Nicolas A.; Kustas, Andrew K.

Refractory High Entropy Alloys (RHEAs) and Refractory Complex Concentrated Alloys (RCCAs) are high-temperature structural alloys ideally suited for use in harsh environments. While these alloys have shown promising structural properties at high temperatures that exceed the practical limits of conventional alloys, such as Ni-based superalloys, exploration of the complex phase-space of these materials remains a significant challenge. We report on a high-throughput alloy processing and characterization methodology, leveraging laser-based metal additive manufacturing (AM) and mechanical testing techniques, to enable rapid exploration of RHEAs/RCCAs. We utilized in situ alloying and compositional grading, unique to AM processing, to rapidly-produce RHEAs/RCCAs using readily available and inexpensive commercial elemental powders. We demonstrate this approach with the MoNbTaW alloy system, as a model material known for having exceptionally high strength at elevated temperature when processed using conventional methods (e.g., casting). Microstructure analysis, chemical composition, and strain rate dependent hardness of AM-processed material are presented and discussed in the context of understanding the structure-properties relationships of RHEAs/RCCAs.

More Details

Methods of depositing anti-reflective coatings for additively manufactured optics

Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018

Beller, Zachary J.; Secor, E.B.; Lavin, J.; Keicher, D.M.; Whetten, Shaun R.; Mani, S.S.

Recent advancements in the field of additive manufacturing (AM) have enabled the production of high-fidelity optical components allowing for the design of novel fiber optic systems. In order to support this emerging technology, methods of depositing anti-reflective coatings (ARCs) onto these optical components must be developed. Work has begun to identify such coating materials; develop systems capable of accurately depositing controlled, uniform layers onto given substrates; establish deposition procedures for ensuring coating validity; and establish post-processing procedures to ensure the reliability of finished components. Areas of interest for finished components include their integration into high-bandwidth fiber optic systems, enabling further miniaturization of communication components. Methods of ARC deposition will be discussed along with final component performance and the identification of key process parameters affecting product performance.

More Details

Multimaterial aerosol jet printing of passive circuit elements

Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018

Johannes, Seth J.; Keicher, D.M.; Lavin, Judith M.; Secor, E.B.; Whetten, Shaun R.; Essien, M.

Recent advances in additive manufacturing technologies present opportunities for rethinking the design and fabrication of electronic components. An area of considerable interest for electronic printing is the production of multi-layered, multi-material passive components. This research focuses on the design and fabrication of a toroidal microinductor using a digital, direct-write printing platform. The toroidal inductor has a three layer design with a dielectric and core material printed in between the lower and upper halves of the conductive coil. The results of this work are discussed, including printer, ink, and processing requirements to successfully print the multi-layer, multi-material component. The inductance of several successful printed devices is measured and compared to predicted values. Overall, the results and lessons of this work provide guidance for future work in this growing field.

More Details

Development of a Generalized Residual Stress Inversion Technique

Johnson, Kyle J.; Bishop, Joseph E.; Reu, Phillip L.; Walsh, Timothy W.; Farias, Paul A.; Jared, Bradley H.; Susan, D.F.; Rouse, Jerry W.; Whetten, Shaun R.; Chen, Mark J.; Aquino, Wilkins A.; Bellotti, Aurelio B.; Jacobs, Laurence J.

Residual stress is a common result of manufacturing processes, but it is one that is often overlooked in design and qualification activities. There are many reasons for this oversight, such as lack of observable indicators and difficulty in measurement. Traditional relaxation-based measurement methods use some type of material removal to cause surface displacements, which can then be used to solve for the residual stresses relieved by the removal. While widely used, these methods may offer only individual stress components or may be limited by part or cut geometry requirements. Diffraction-based methods, such as X-ray or neutron, offer non-destructive results but require access to a radiation source. With the goal of producing a more flexible solution, this LDRD developed a generalized residual stress inversion technique that can recover residual stresses released by all traction components on a cut surface, with much greater freedom in part geometry and cut location. The developed method has been successfully demonstrated on both synthetic and experimental data. The project also investigated dislocation density quantification using nonlinear ultrasound, residual stress measurement using Electronic Speckle Pattern Interferometry Hole Drilling, and validation of residual stress predictions in Additive Manufacturing process models.

More Details

Achieving high strength and ductility in traditionally brittle soft magnetic intermetallics via additive manufacturing

Acta Materialia

Babuska, Tomas F.; Wilson, Mark A.; Johnson, Kyle J.; Whetten, Shaun R.; Curry, John C.; Rodelas, Jeffrey R.; Atkinson, Cooper; Lu, Ping L.; Chandross, M.; Krick, Brandon A.; Michael, Joseph R.; Argibay, Nicolas A.; Susan, D.F.; Kustas, Andrew K.

Intermetallic alloys possess exceptional soft magnetic properties, including high permeability, low coercivity, and high saturation induction, but exhibit poor mechanical properties that make them impractical to bulk process and use at ideal compositions. We used laser-based Additive Manufacturing to process traditionally brittle Fe–Co and Fe–Si alloys in bulk form without macroscopic defects and at near-ideal compositions for electromagnetic applications. The binary Fe–50Co, as a model material, demonstrated simultaneous high strength (600–700 MPa) and high ductility (35%) in tension, corresponding to a ∼300% increase in strength and an order-of-magnitude improvement in ductility relative to conventionally processed material. Atomic-scale toughening and strengthening mechanisms, based on engineered multiscale microstructures, are proposed to explain the unusual combination of mechanical properties. This work presents an instance in which metal Additive Manufacturing processes are enabling, rather than limiting, the development of higher-performance alloys.

More Details

Controlling the extent of atomic ordering in intermetallic alloys through additive manufacturing

Additive Manufacturing

Kustas, Andrew K.; Fancher, Chris M.; Whetten, Shaun R.; Dagel, Daryl D.; Michael, Joseph R.; Susan, D.F.

Control of the atomic structure, as measured by the extent of the embrittling B2 chemically ordered phase, is demonstrated in intermetallic alloys through additive manufacturing (AM) and characterized using high fidelity neutron diffraction. As a layer-by-layer rapid solidification process, AM was employed to suppress the extent of chemically ordered B2 phases in a soft ferromagnetic Fe-Co alloy, as a model material system of interest to electromagnetic applications. The extent of atomic ordering was found to be insensitive to the spatial location within specimens and suggests that the thermal conditions within only a few AM layers were most influential in controlling the microstructure, in agreement with the predictions from a thermal model for welding. Analysis of process parameter effects on ordering found that suppression of B2 phase was the result of an increased average cooling rate during processing. AM processing parameters, namely interlayer interval time and build velocity, were used to systematically control the relative fraction of ordered B2 phase in specimens from 0.49 to 0.72. Hardness of AM specimens was more than 150% higher than conventionally processed bulk material. Implications for tailoring microstructures of intermetallic alloys are discussed.

More Details

Posters for AA/CE Reception

Kuether, Robert J.; Allensworth, Brooke M.; Backer, Adam B.; Chen, Elton Y.; Dingreville, Remi P.; Forrest, Eric C.; Knepper, Robert; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.; Grant, Michael J.; Atencio, Lauren C.; Hipple, Tyler J.; Maes, Danae M.; Timlin, Jerilyn A.; Ma, Tian J.; Garcia, Rudy J.; Danford, Forest L.; Patrizi, Laura P.; Galasso, Jennifer G.; Draelos, Timothy J.; Gunda, Thushara G.; Venezuela, Otoniel V.; Brooks, Wesley A.; Anthony, Stephen M.; Carson, Bryan C.; Reeves, Michael J.; Roach, Matthew R.; Maines, Erin M.; Lavin, Judith M.; Whetten, Shaun R.; Swiler, Laura P.

Abstract not provided.

Data Analysis for the Born Qualified Grand LDRD Project

Swiler, Laura P.; van Bloemen Waanders, Bart G.; Jared, Bradley H.; Koepke, Joshua R.; Whetten, Shaun R.; Madison, Jonathan D.; Ivanoff, Thomas I.; Jackson, Olivia D.; Cook, Adam W.; Brown-Shaklee, Harlan J.; Kammler, Daniel K.; Johnson, Kyle J.; Ford, Kurtis R.; Bishop, Joseph E.; Roach, R.A.

This report summarizes the data analysis activities that were performed under the Born Qualified Grand Challenge Project from 2016 - 2018. It is meant to document the characterization of additively manufactured parts and processe s for this project as well as demonstrate and identify further analyses and data science that could be done relating material processes to microstructure to properties to performance.

More Details

Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)

Additive Manufacturing

Kustas, Andrew K.; Susan, D.F.; Johnson, Kyle J.; Whetten, Shaun R.; Rodriguez, Mark A.; Dagel, Daryl D.; Michael, Joseph R.; Keicher, David M.; Argibay, Nicolas A.

Processing of the low workability Fe-Co-1.5V (Hiperco ® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification, which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. Magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco ® alloys. Hiperco ® is a registered trademark of Carpenter Technologies, Readings, PA.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

59 Results
59 Results