High Temperature Downhole Motor
Abstract not provided.
Abstract not provided.
Physics of Fluids
A reassessment of historical drag coefficient data for spherical particles accelerated in shock-induced flows has motivated new shock tube experiments of particle response to the passage of a normal shock wave. Particle drag coefficients were measured by tracking the trajectories of 1-mm spheres in the flow induced by incident shocks at Mach numbers 1.68, 1.93, and 2.04. The necessary data accuracy is obtained by accounting for the shock tube wall boundary layer growth and avoiding interactions between multiple particles. Similar to past experiments, the current data clearly show that as the Mach number increases, the drag coefficient increases substantially. This increase significantly exceeds the drag predicted by incompressible standard drag models, but a recently developed compressible drag correlation returns values quite close to the current measurements. Recent theoretical work and low particle accelerations indicate that unsteadiness should not be expected to contribute to the drag increase over the relatively long time scales of the experiments. These observations suggest that elevated particle drag coefficients are a quasi-steady phenomenon attributed to increased compressibility rather than true flow unsteadiness. © 2012 American Institute of Physics.
Proposed for publication in Physics of Fluids.
Abstract not provided.
41st AIAA Fluid Dynamics Conference and Exhibit
A reassessment of historical drag coefficient data for spherical particles accelerated in shock-induced flows has motivated new shock tube experiments of particle response to the passage of a normal shock wave. Particle drag coefficients were measured by tracking the trajectories of 1-mm spheres in the wake of incident shocks of Mach numbers 1.68, 1.93, and 2.05. Data clearly show that as the Mach number increases, the drag coefficient increases substantially, consistent with past experiments. This increase significantly exceeds the drag predicted by incompressible standard drag models, but recently developed compressible drag models return values quite close to the current measurements. Low values for the acceleration parameter indicate that unsteadiness should not be expected to contribute to the drag increase. These observations suggest that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness.
Abstract not provided.
Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube experiments. The development of the Multiphase Shock Tube and associated diagnostic capabilities offers experimental capability to a previously inaccessible regime, which can provide unprecedented data concerning particle dynamics of dense gas-solid flows.
Abstract not provided.
Transactions - Geothermal Resources Council
Our charter at Sandia National Laboratories is to develop technology to reduce the development cost of geothermal drilling. Due to their aggressive penetration rate performance, Polycrystalline Diamond Compact (PDC) bits are of particular interest for this application and they have recently been demonstrated to be capable of drilling hard-rock formations characteristic of geothermal reservoirs. Additionally, oil and gas operators are increasingly forced to extend their drilling targets to include these hard-rock formations as our fossil energy reserves dwindle. However, PDC bits are particularly susceptible to impact-type damage due to the onset of drilling vibrations that can cause bit failure. Bit vibration produces an undulated surface in the rock that in turn produces a time-variant force that feeds back into the vibration of the bit and drillstring. While there is considerable debate in the drilling community regarding the relative significance of the various types of vibrations, self-induced vibrations do occur and can be mathematically predicted if the drill bit, drillstring, and rock type are not correctly matched. One way to alleviate this problem is to insert a vibration absorber into the drillstring. Given the broad range of parameters contributing to bit vibrations, any damper installed in the drillstring should be controllable to give it more dynamic range. We have experimentally demonstrated that a controllable damper can introduce stability in PDC bits drilling hard rock typical of geothermal formations.
Abstract not provided.