Publications Details

Publications / Conference Presenation

Evaluation of the GaAs Displacement Damage Metric using Updated Nuclear Data

Asper, Nicholas; Charlton, William; Griffin, Patrick J.

The emerging use of the physics-based athermal recombination-corrected displacement per atom (arc-dpa) model for the displacement damage efficiency has motivated a re-evaluation of the historical empirically-derived GaAs damage response function with the purpose of highlighting needs for future analytical and experimental work. The 1-MeV neutron damage equivalence methodology used in the ASTM E-722 standard for GaAs has been re-evaluated using updated nuclear data. This yielded a higher fidelity representation of the GaAs displacement kerma and, through the use of the refined PKA recoil energy-dependent damage efficiency model, an updated 1-MeV(GaAs) displacement damage function. This re-evaluation included use of the Norgett-Robinson-Torrens (NRT) model for an updated threshold treatment, rather than the sharp-threshold Kinchin-Pease model used in the current ASTM standard. The underlying nuclear data evaluations have been updated to use the ENDF/VIII.0 75As and TENDL-2019 71Ga/69Ga evaluations. The displacement kerma and 1-MeV-equivalent damage responses were calculated using a modified NJOY-2016 code which allowed for refinements in some of the damage models. This paper shows that an updated displacement damage function, based upon the latest nuclear data, is consistent with the experimental data used to develop the current ASTM E-722 GaAs standard. Using a double ratio approach to compare the available experimental data with the calculated response, the average legacy double ratio was found to be 0.97±0.05 and the average updated double ratio was found to be 0.94 ±0.05.