Publications

Results 1276–1300 of 9,998

Search results

Jump to search filters

Code-verification techniques for hypersonic reacting flows in thermochemical nonequilibrium

Journal of Computational Physics

Freno, Brian A.; Carnes, Brian R.; Weirs, Gregory

The study of hypersonic flows and their underlying aerothermochemical reactions is particularly important in the design and analysis of vehicles exiting and reentering Earth's atmosphere. Computational physics codes can be employed to simulate these phenomena; however, code verification of these codes is necessary to certify their credibility. To date, few approaches have been presented for verifying codes that simulate hypersonic flows, especially flows reacting in thermochemical nonequilibrium. In this work, we present our code-verification techniques for verifying the spatial accuracy and thermochemical source term in hypersonic reacting flows in thermochemical nonequilibrium. Additionally, we demonstrate the effectiveness of these techniques on the Sandia Parallel Aerodynamics and Reentry Code (SPARC).

More Details

An active learning high-throughput microstructure calibration framework for solving inverse structure–process problems in materials informatics

Acta Materialia

Foulk, James W.; Mitchell, John A.; Swiler, Laura P.; Wildey, Timothy

Determining a process–structure–property relationship is the holy grail of materials science, where both computational prediction in the forward direction and materials design in the inverse direction are essential. Problems in materials design are often considered in the context of process–property linkage by bypassing the materials structure, or in the context of structure–property linkage as in microstructure-sensitive design problems. However, there is a lack of research effort in studying materials design problems in the context of process–structure linkage, which has a great implication in reverse engineering. In this work, given a target microstructure, we propose an active learning high-throughput microstructure calibration framework to derive a set of processing parameters, which can produce an optimal microstructure that is statistically equivalent to the target microstructure. The proposed framework is formulated as a noisy multi-objective optimization problem, where each objective function measures a deterministic or statistical difference of the same microstructure descriptor between a candidate microstructure and a target microstructure. Furthermore, to significantly reduce the physical waiting wall-time, we enable the high-throughput feature of the microstructure calibration framework by adopting an asynchronously parallel Bayesian optimization by exploiting high-performance computing resources. Case studies in additive manufacturing and grain growth are used to demonstrate the applicability of the proposed framework, where kinetic Monte Carlo (kMC) simulation is used as a forward predictive model, such that for a given target microstructure, the target processing parameters that produced this microstructure are successfully recovered.

More Details
Results 1276–1300 of 9,998
Results 1276–1300 of 9,998