Visualization Work Supporting Data Staging and Code Coupling
Abstract not provided.
Abstract not provided.
Abstract not provided.
Automated analysis of unstructured text documents (e.g., web pages, newswire articles, research publications, business reports) is a key capability for solving important problems in areas including decision making, risk assessment, social network analysis, intelligence analysis, scholarly research and others. However, as data sizes continue to grow in these areas, scalable processing, modeling, and semantic analysis of text collections becomes essential. In this paper, we present the ParaText text analysis engine, a distributed memory software framework for processing, modeling, and analyzing collections of unstructured text documents. Results on several document collections using hundreds of processors are presented to illustrate the exibility, extensibility, and scalability of the the entire process of text modeling from raw data ingestion to application analysis.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.
Physical Review B
Abstract not provided.
Abstract not provided.
Abstract not provided.
The present paper is the second in a series published at I/ITSEC that seeks to explain the efficacy of multi-role experiential learning employed to create engaging game-based training methods transitioned to the U.S. Army, U.S. Army Special Forces, Civil Affairs, and Psychological Operations teams. The first publication (I/ITSEC 2009) summarized findings from a quantitative study that investigated experiential learning in the multi-player, PC-based game module transitioned to PEO-STRI, DARWARS Ambush! NK (non-kinetic). The 2009 publication reported that participants of multi-role (Player and Reflective Observer/Evaluator) game-based training reported statistically significant learning and engagement. Additionally when the means of the two groups (Player and Reflective Observer/Evaluator) were compared, they were not statistically significantly different from each other. That is to say that both playing as well as observing/evaluating were engaging learning modalities. The Observer/Evaluator role was designed to provide an opportunity for real-time reflection and meta-cognitive learning during game play. Results indicated that this role was an engaging way to learn about communication, that participants learned something about cultural awareness, and that the skills they learned were helpful in problem solving and decision-making.
The present paper seeks to continue to understand what and how users of non-kinetic game-based missions learn by revisiting the 2009 quantitative study with further investigation such as stochastic player performance analysis using latent semantic analyses and graph visualizations. The results are applicable to First-Person game-based learning systems designed to enhance trainee intercultural communication, interpersonal skills, and adaptive thinking. In the full paper, we discuss results obtained from data collected from 78 research participants of diverse backgrounds who trained by engaging in tasks directly, as well as observing and evaluating peer performance in real-time. The goal is two-fold. One is to quantify and visualize detailed player performance data coming from game play transcription to give further understanding to the results in the 2009 I/ITSEC paper. The second is to develop a set of technologies from this quantification and visualization approach into a generalized application tool to be used to aid in future games’ development of player/learner models and game adaptation algorithms.
Specifically, this paper addresses questions such as, “Are there significant differences in one's experience when an experiential learning task is observed first, and then performed by the same individual?” “Are there significant differences among groups participating in different roles in non-kinetic engagement training, especially when one role requires more active participation that the other?” “What is the impact of behavior modeling on learning in games?” In answering these questions the present paper reinforces the 2009 empirical study conclusion that contrary to current trends in military game development, experiential learning is enhanced by innovative training approaches designed to facilitate trainee mastery of reflective observation and abstract conceptualization as much as performance-based skills.
Abstract not provided.
Abstract not provided.
This paper compares three approaches for model selection: classical least squares methods, information theoretic criteria, and Bayesian approaches. Least squares methods are not model selection methods although one can select the model that yields the smallest sum-of-squared error function. Information theoretic approaches balance overfitting with model accuracy by incorporating terms that penalize more parameters with a log-likelihood term to reflect goodness of fit. Bayesian model selection involves calculating the posterior probability that each model is correct, given experimental data and prior probabilities that each model is correct. As part of this calculation, one often calibrates the parameters of each model and this is included in the Bayesian calculations. Our approach is demonstrated on a structural dynamics example with models for energy dissipation and peak force across a bolted joint. The three approaches are compared and the influence of the log-likelihood term in all approaches is discussed.
The problem of incomplete data - i.e., data with missing or unknown values - in multi-way arrays is ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of missing data, CP can be formulated as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 x 1000 x 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process.
Co-design has been identified as a key strategy for achieving Exascale computing in this decade. This paper describes the need for co-design in High Performance Computing related research in embedded computing the development of hardware/software co-simulation methods.
Abstract not provided.
The analysis of networked activities is dramatically more challenging than many traditional kinds of analysis. A network is defined by a set of entities (people, organizations, banks, computers, etc.) linked by various types of relationships. These entities and relationships are often uninteresting alone, and only become significant in aggregate. The analysis and visualization of these networks is one of the driving factors behind the creation of the Titan Toolkit. Given the broad set of problem domains and the wide ranging databases in use by the information analysis community, the Titan Toolkit's flexible, component based pipeline provides an excellent platform for constructing specific combinations of network algorithms and visualizations.
Physica D
Abstract not provided.
International Journal of Numerical Methods in Fluids
Abstract not provided.
Abstract not provided.
The observation and characterization of a single atom system in silicon is a significant landmark in half a century of device miniaturization, and presents an important new laboratory for fundamental quantum and atomic physics. We compare with multi-million atom tight binding (TB) calculations the measurements of the spectrum of a single two-electron (2e) atom system in silicon - a negatively charged (D-) gated Arsenic donor in a FinFET. The TB method captures accurate single electron eigenstates of the device taking into account device geometry, donor potentials, applied fields, interfaces, and the full host bandstructure. In a previous work, the depths and fields of As donors in six device samples were established through excited state spectroscopy of the D0 electron and comparison with TB calculations. Using self-consistent field (SCF) TB, we computed the charging energies of the D- electron for the same six device samples, and found good agreement with the measurements. Although a bulk donor has only a bound singlet ground state and a charging energy of about 40 meV, calculations show that a gated donor near an interface can have a reduced charging energy and bound excited states in the D- spectrum. Measurements indeed reveal reduced charging energies and bound 2e excited states, at least one of which is a triplet. The calculations also show the influence of the host valley physics in the two-electron spectrum of the donor.
Abstract not provided.
Abstract not provided.