Publications

Results 95151–95175 of 96,771

Search results

Jump to search filters

Rapid plasma cleaning as a waste minimization tool

Ward, P.P.

Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, current cleaning rates are impractically low for many applications. A set of experiments is described which demonstrate that the rate of plasma removal of organic contaminants can be greatly increased by modification of the plasma chemistry. A comparison of plasma cleaning rates of argon, oxygen and oxygen/sulfur hexafluoride gases shows that the fluorine containing plasma is at least an order of magnitude faster at etching organics. Rates are reported for the removal of polymer films and of A-9 Aluminum cutting fluid. 7 refs.

More Details

Derivation of the error in estimating the time separation between two pulses in the presence of either white, lowpass, or bandpass noise

Jelinek, D.A.

Measuring the yield of an underground nuclear detonation using sensor cables has been proposed for verification purposes. These cables not only sense the signals associated with the yield they also capture the sensitive primary and secondary electromagnetic pulses associated with the detonation but have nothing to do with the yield. An anti-intrusiveness device is to be connected to the sensor cable to prevent the electromagnetic pulses from passing through to the verifier. The anti-intrusiveness device both attenuates the electromagnetic pulses and adds noise to the cable over the interval of time that the electromagnetic pulses may be present. This report addresses the problem of determining the optimum noise spectral density for masking the electromagnetic pulses. To this end it derives an expression for the lower bound on the error in the estimation of the time separation between two pulses when the time of arrival of neither is known and they are imbedded in Gaussian noise. The noise spectral shapes considered are white, and lowpass, and bandpass.

More Details

UPEML Version 3.0: A machine-portable CDC update emulator

Mehlhorn, Thomas A.

UPEML is a machine-portable program that emulates a subset of the functions of the standard CDC Update. Machine-portability has been achieved by conforming to ANSI standards for Fortran-77. UPEML is compact and fairly efficient; however, it only allows a restricted syntax as compared with the CDC Update. This program was written primarily to facilitate the use of CDC-based scientific packages on alternate computer systems such as the VAX/VMS mainframes and UNIX workstations. UPEML has also been successfully used on the multiprocessor ELXSI, on CRAYs under both UNICOS and CTSS operating systems, and on Sun, HP, Stardent and IBM workstations. UPEML was originally released with the ITS electron/photon Monte Carlo transport package, which was developed on a CDC-7600 and makes extensive use of conditional file structure to combine several problem geometry and machine options into a single program file. UPEML 3.0 is an enhanced version of the original code and is being independently released for use at any installation or with any code package. Version 3.0 includes enhanced error checking, full ASCII character support, a program library audit capability, and a partial update option in which only selected or modified decks are written to the complete file. Version 3.0 also checks for overlapping corrections, allows processing of pested calls to common decks, and allows the use of alternate files in READ and ADDFILE commands. Finally, UPEML Version 3.0 allows the assignment of input and output files at runtime on the control line.

More Details

Energy and Environment: A Sandia Technology Bulletin

Parrott, Lori K.

The Planning and Staff Support of the Sandia National Laboratories publishes a monthly bulletin titled, Energy and Environment. The bulletin facilitates technology exchange with industries, universities, and with other government agencies. This bulletin is for the month of April 1992 and covers such things as new methods of soldering which reduces environmental threats by avoiding chlorofluorocarbon solvents. Some technologies developed are soldering in controlled atmospheres, acid-vapor soldering, and laser soldering. Another topic in this bulletin is the designing of catalysts of chemical reactions by computers. Biomimetic catalysts are being created by Computer-Aided Molecular Design. These biomimetic catalysts can aid in fuel conversion. In-situ remediation of soils contaminated by heavy metals was another topic in this bulletin. This in-situ process is called, electrokinetic remediation. It uses electrodes to induce a metal-attracting electric field in the ground. The last topic in this bulletin is the design of a semiconductor bridge (SCB) which is used to improve the timing and effectiveness of blasting. Timing and accuracy is important; and the blasting industry is no exception. This SCB gives a low-energy pulse which causes a doped region on a polysilicon substrate into a bright plasma. This plasma discharge causes the ignition and produces an accurate explosion in microseconds. (MB)

More Details

Small-scale brine inflow experiments: Data report through June 6, 1991

Finley, S.J.

Seventeen small-scale brine inflow experiment boreholes have been and are currently being monitored for brine accumulation. All of the boreholes were drilled from underground excavations at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Experiments are ongoing in Room D, Room L4, and the Q access drift in the WIPP underground. The boreholes range from approximately 5 to 90 cm in diameter and from 3 to 6 m in length. The objective of these experiments is to provide data for use in the development and validation of a predictive, mechanistic model for brine inflow to the repository. There is considerable variability in the observed responses of the different boreholes, and there are also significant similarities. Two of the boreholes in Room D have yielded no brine in more than 3.5 years, while all 15 of the other boreholes have produced anywhere from 2 to 90 kg of brine. Inflow rates vary by as much as 2 orders of magnitude for boreholes of the same dimensions in the same general location; however, inflow rates measured in most of the boreholes are of the same order of magnitude. Decreasing, increasing, and steady inflow rates have been measured. Nevertheless, 9 of the 15 brine-producing boreholes behaved similarly early in their history. These 9 boreholes all exhibited a relatively high initial inflow rate followed by a fairly smooth decline with time. Variabilities in borehole response can be explained by assuming there are heterogeneities in the formation tested. In most cases these heterogeneities are believed to be excavation-induced. Data from these experiments suggest that flow near excavations has been altered by rock deformation, including fracturing. Additional experiments are required to differentiate between a far-field, near-field, or combination brine source and to characterize the significant flow mechanism or mechanisms.

More Details

ROAR: A 3-D tethered rocket simulation code

York II, A.R.; Ludwigsen, J.S.

A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.

More Details

Report on the joint meeting of the Division of Development and Technology Plasma Wall Interaction and High Heat Flux Materials and Components task groups

Nygren, Richard E.

The Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups typically hold a joint meeting each year to provide a forum for discussion of technical issues of current interest as well as an opportunity for program reviews by the Department of Energy (DOE). At the meeting in September 1990, reported here, research programs in support of the International Thermonuclear Experimental Reactor (ITER) were highlighted. The first part of the meeting was devoted to research and development (R&D) for ITER on plasma facing components plus introductory presentations on some current projects and design studies. The balance of the meeting was devoted to program reviews, which included presentations by most of the participants in the Small Business Innovative Research (SBIR) Programs with activities related to plasma wall interactions. The Task Groups on Plasma/Wall Interaction and on High Heat Flux Materials and Components were chartered as continuing working groups by the Division of Development and Technology in DOE`s Magnetic Fusion Program. This report is an addition to the series of ``blue cover`` reports on the Joint Meetings of the Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups. Among several preceding meetings were those in October 1989 and January 1988.

More Details

Evaluation of factors affecting the timing capabilities of the MC3858 sprytron

Lee, Stephen R.

The switch delay time of the MC3858 sprytron was measured using a test matrix consisting of 36 different trigger circuit configurations. The test matrix allowed the measurement of switch delay times for peak trigger voltages ranging from 47 V to 1340 V and for stored trigger energies ranging from 0.023 mJ to 2.7 mJ. The average switch delay time was independent of peak trigger voltage above approximately 800 V. Similarly, the average switch delay was independent of trigger stored energy above approximately 0.5 mJ. Below these saturation values, the average switch delay increases rapidly with decreasing trigger voltage or esergy. In contrast to the average switch delay time, the shot-to-shot variability in switch delay time does not appear to be strongly affected by peak trigger voltage as long as the trigger voltage is groater than 100 V. Below 100 V, the variability in switch delay time rises rapidly due to failure of the trigger to undergo immediate high voltage breakdown when trigger voltage is applied. The effect of an abnormally-high-resistance trigger probe on switch delay time was also investigated. It was found that a high-resistance probe behaved as a second overvoltage gap in the trigger circuit. Operation with a peak trigger voltage greater than the breakdown voltage of this second gap yielded delay times comparable to operation with a normal trigger. Operation with a peak trigger voltage less than the breakdown voltage of this second gap increased the switch delay time by an amount comparable to the time required to ramp the trigger circuit output up to the breakdown voltage of the second gap. Finally, the effect that varying the bias voltage applied to the sprytron has on switch delay time was measured. The switch delay time did not appear to depend on bias voltage for bias voltages between 725 V and 2420 V.

More Details

An investigation of the impact of conceptual model uncertainty on the estimated performance of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff; Yucca Mountain Site Characterization Project

Gallegos, David P.

Performance assessment modeling for High Level Waste (HLW) disposal incorporates three different types of uncertainty. These include data and parameter uncertainty, modeling uncertainty (which includes conceptual, mathematical, and numerical), and uncertainty associated with predicting the future state of the system. In this study, the potential impact of conceptual model uncertainty on the estimated performance of a hypothetical high-level radioactive waste disposal site in unsaturated, fractured tuff has been assessed for a given group of conceptual models. This was accomplished by taking a series of six, one-dimensional conceptual models, which differed only by the fundamental assumptions used to develop them, and conducting ground-water flow and radionuclide transport simulations. Complementary cumulative distribution functions (CCDFs) representing integrated radionuclide release to the water table indicate that differences in the basic assumptions used to develop conceptual models can have a significant impact on the estimated performance of the site. Because each of the conceptual models employed the same mathematical and numerical models, contained the same data and parameter values and ranges, and did not consider the possible future states of the system, changes in the CCDF could be attributed primarily to differences in conceptual modeling assumptions. Studies such as this one could help prioritize site characterization activities by identifying critical and uncertain assumptions used in model development, thereby providing guidance as to where reduction of uncertainty is most important.

More Details

Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

Gibson, J.D.

The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work.

More Details

US Senate Committee on Armed Services DOE Defense Nuclear Facilities Panel

Parrott, Lori K.

Sandia is a government-owned, contractor-operated national laboratory that AT&T has operated on a no-profit, no-fee basis since 1949. We have been an integral part of the nuclear weapons program, providing total concept-to-retirement engineering for every warhead and bomb in the nuclear weapon stockpile. We are proud of our contributions to national security. Our scientific and engineering skills, our facilities, and our experience have benefited not only the nuclear weapons program but have also contributed significantly to their areas of national security, including conventional defense, energy, and industrial competitiveness. Likewise, these capabilities position us well to continue a tradition of exceptional service in the national service in the national interest. Sandia is a multiprogram national laboratory with mission responsibilities in nuclear weapons, arms control and verification, energy and environment, and technology transfer. Our work for the DOE Assistant Secretary for Defense Programs constitutes 50% of the laboratory`s effort. Sandia`s arms control, verification, and related intelligence and security programs, funded by DOE and by other agencies constitute the largest aggregation of such work at any facility in the world. We also support DOE with technology development -- in particular, specialized robotics and waste characterization and treatment processes to assist in the cleanup of contaminated sites. Research and development to support the National Energy Strategy is another substantial laboratory activity. Sandia`s successful developments in renewable, nuclear, and fossil energy technologies have saved the country billions of dollars in energy supply and utilization. Technology transfer is conducted across all Sandia programs.

More Details

Shear response of a rock joint under different boundary conditions: An experimental study

Price, Ronald H.

A series of cyclic, direct-shear tests was conducted on several replicas of a tensile fracture of welded tuff to verify the graphical method proposed by Saeb (1989) and by Amedei and Saeb (1990). Tests were performed under different levels of constant normal load and constant normal stiffness. Each test consisted of five cycles of forward and reverse shear. The effect of cyclic loading on the fracture shear behavior was investigated. Fracture surface asperity degradation was quantified by comparing fracture fractal dimensions before and after shear.

More Details

Files improvement the NARA way

Pasterczyk, C.

The purpose of this talk is to set the scene with a definition of records management, records and federal records. It is also to introduce some techniques to ensure that office files are properly organized and maintained, rapidly retrievable, complete, and ready for appropriate disposition the NARA (National Archives and Records Administration) way.

More Details

The Fixed-Cavity VISAR

Crump Jr., O.B.; Stanton, P.L.; Sweatt, W.C.

A designed and assembled method for a non-adjustable Interferometer cavity has been developed at Sandia National Laboratories which has enabled the development of a Fixed-Cavity Velocity Interferometer System for Any Reflector (VISAR). In this system, the critical interference adjustments are performed during assembly of the interferometer cavity, freeing the user from an otherwise repetitive task. The Fixed-Cavity VISAR System is constructed in modular form. Compared to previous VISAR systems, it is easy to use, and gives high quality results. 6 refs.

More Details

Summary of engineering-scale experiments for the Solar Detoxification of Water project

Pacheco, James E.

This report contains a summary of large-scale experiments conducted at Sandia National Laboratories under the Solar Detoxification of Water project. The objectives of the work performed were to determine the potential of using solar radiation to destroy organic contaminants in water by photocatalysis and to develop the process and improve its performance. For these experiments, we used parabolic troughs to focus sunlight onto glass pipes mounted at the trough's focus. Water spiked with a contaminant and containing suspended titanium dioxide catalyst was pumped through the illuminated glass pipe, activating the catalyst with the ultraviolet portion of the solar spectrum. The activated catalyst creates oxidizers that attack and destroy the organics. Included in this report are a summary and discussion of the implications of experiments conducted to determine: the effect of process kinetics on the destruction of chlorinated solvents (such trichloroethylene, perchloroethylene, trichloroethane, methylene chloride, chloroform and carbon tetrachloride), the enhancement due to added hydrogen peroxide, the optimal catalyst loading, the effect of light intensity, the inhibition due to bicarbonates, and catalyst issues.

More Details

In situ measurement of particle formation in heated jet fuels. A new application of photon correlation spectroscopy

American Chemical Society, Division of Petroleum Chemistry, Preprints

Trott, Wayne T.

The high-temperature stability of current and proposed aviation fuels is a major factor in the design of advanced technology aircraft engines. Efforts to develop highly stable formulations and thereby mitigate fouling problems in aircraft fuel system components would clearly benefit from a predictive model that describes the important parameters in thermally induced degradation of the liquid fuel as well as the deposition of solid species. To generate such a model, diagnostic tools are needed to characterize adequately fluid dynamics, heat transfer, mass transfer and complex chemical processes that occur in thermally stressed fuels. In this paper, the authors describe preliminary results in the use of a dynamic light scattering technique, photon correlation spectroscopy (PCS), to address one aspect of the fuel stability problem; i.e., incipient particle formation and subsequent growth in mean particle size as a function of tempreture, exposure time, degree of oxidation, etc.

More Details

A methodology for the transfer of probabilities between accident severity classification schemes

Whitlow, J.D.

Accident severity categories are used in many risk analyses for the classification and treatment of accidents involving vehicles transporting radioactive materials. Any number or definition of severity categories may be used in an analysis. A methodology which allow accident probabilities associated with one severity category scheme to be transferred to another severity category scheme is described. The supporting data and information necessary to apply the methodology are also discussed. The ability to transfer accident probabilities between severity category schemes will allow some comparisons of different studies at the category level. The methodology can be employed to transfer any quantity between category schemes if the appropriate supporting information is available.

More Details

Data bases concerning the transportation of radioactive materials

Mcclure, J.D.

This paper will describe two data bases which provide supporting information on radioactive material transport experience in the United States. The Radioactive Material Incident Report (RMIR) documents accident/incident experience from 1971 to the present from data acquired from the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). The Radioactive Material Postnotification (RAMPOST) data base documents the shipments that have taken place for Highway Route Controlled Quantities (HRCQ) of radioactive material. HRCQ shipments are post notified (that is, after the shipment) to the DOT.

More Details

New high-{Tc} benchmarks for organic superconductors based on ET (electron-donor) and C{sub 60} (electron-acceptor) molecules

Schirber, James E.

The highest {Tc}`s achieved in organic electron-donor-based systems occur in two isostructural ET salts, viz., {kappa}-[(ET){sub 2}Cu][N(CN){sub 2}]X, X = Br ({Tc} = 11.6 K, ambient pressure), X = Cl ({Tc} = 12.8 K, 0.3 kbar) whereas for the electron-acceptor-based systems derived from C{sub 60} they occur in K{sub 3}C{sub 60} ({Tc} = 19 K), Rb{sub 3}C{sub 60} ({Tc} = 29 K), Rb{sub x}Cs{sub y}C{sub 60} ({Tc} 33 K) and Rb{sub x}Tl{sub y}C{sub 60} ({Tc} {approx} 45 K). Research performed at Argonne National Laboratory, and based on the ET and C{sub 60} systems, is reviewed.

More Details

A template-based approach to clustering

Osbourn, Gordon C.

A new approach for solving two-dimensional clustering problems is presented. The method is based on an inhibitory template which is applied to each pair of dots in a data set. Direct clustering of the pair is inhibited (allowed) if another dot is present (absent), respectively, within the area of the template. The performance of the method is thus entirely determined by the shape of the template. Psychophysical experiments have been used to define the template shape for this work, so that the resulting method requires no pattern-dependent adjustment of any parameters. The novel concept of a psychophysically-defined template and the absence of adjustable parameters set this approach apart from previous work. The useful grouping performance of this approach is demonstrated with the successful grouping of a variety of dot patterns selected from the clustering literature.

More Details

The DOE/AL cost and schedule control system (CS{sup 2}): A user`s perspective in its use as both a reporting system and as a valuable project management tool

Fate, Richard E.

Sandia National Laboratories (SNL) Environmental Restoration (ER) Program has recently implemented a highly structured CS{sup 2} required by DOE. It is a complex system which has evolved over a period of a year and a half. During the implementation of this system, problem areas were discovered in cost estimating, allocation of management costs, and integration of the CS{sup 2} system with the Sandia Financial Information System. In addition to problem areas, benefits of the system were fund in the areas of schedule adjustment, projecting personnel requirements, budgeting, and responding to audits. Finally, a number of lessons were learned regarding how to successfully implement the system.

More Details

Spectroscopic and microstructural characterization of solution chemistry effects in PZT thin film processing

Schwartz, R.W.

Ferroelectric PZT 53:47 thin films were prepared by two different solution deposition methodologies. Both routes utilized carboxylate and alkoxide precursors and acetic acid, which served as both a solvent and a chemical modifier. We have studied the effects of solution preparation conditions on film microstructure and ferroelectric properties, and have used NMR spectroscopy to characterize chemical differences between the two precursor solutions. Films prepared by a sequential precursor addition (SPA) process were characterized by slightly lossy hysteresis loops, with a P{sub r} of 18.7 {mu}C/cm{sup 2} and an E{sub c} of 55.2 kV/cm. Films prepared by an inverted mixing order (IMO) process were characterized by well saturated hysteresis loops, a P{sub r} of 26.2 {mu}C/cm{sup 2} and an E{sub c} of 43.3 kV/cm. While NMR investigations indicated that the chemical environments of both the proton and carbon species were similar for the two processes, differences in the amounts of by-products (esters, and therefore, water) formed were noted. These differences apparently impacted ceramic microstructure. Although both films were characterized by a columnar growth morphology, the SPA derived film displayed a residual pyrochlore layer at the film surface, which did not transform into the stable perovskite phase. The presence of this layer resulted in poor dielectric properties and lossy ferroelectric behavior.

More Details

CEPXS/ONELD: A one-dimensional coupled electron-photon discrete ordinates code package

Lorence Jr., L.J.; Morel, J.E.

CEPXS/ONELD is a discrete ordinates transport code package that can model the electron-photon cascade from 100 MeV to 1 keV. The CEPXS code generates fully-coupled multigroup-Legendre cross section data. This data is used by the general-purpose discrete ordinates code, ONELD, which is derived from the Los Alamos ONEDANT and ONETRAN codes. Version 1.0 of CEPXS/ONELD was released in 1989 and has been primarily used to analyze the effect of radiation environments on electronics. Version 2.0 is under development and will include user-friendly features such as the automatic selection of group structure, spatial mesh structure, and S{sub N} order.

More Details

Pinning down the compensation and performance review system through data base design

Lampson, S.

Changing the focus of a corporate compensation and performance review system from process orientation to data base orientation results in a more integrated and flexible design. Data modeling of the business system provides both systems and human resource professionals insight into the underlying constants of the review process. Descriptions of the business and data modeling processes are followed by a detailed presentation of the data base model. Benefits derived from designing a system based on the model include elimination of hard-coding, better audit capabilities, a consistent approach to exception processing, and flexibility of integrating changes in compensation policy and philosophy.

More Details
Results 95151–95175 of 96,771
Results 95151–95175 of 96,771