Publications

Results 95201–95250 of 96,771

Search results

Jump to search filters

Testing of the single-element stretched-membrane dish

Grossman, James W.

The goal of the Stretched-Membrane Dish Program is the development of a dish solar concentrator fabricated with a single optical element capable of collecting 60 kWt. Solar Kinetics, Inc., has constructed a prototype 7-meter dish to demonstrate the manufacturability and optical performance of this innovative design. The reflective surface of the dish consists of a plastically deformed metal membrane with a separate reflective polymer membrane on top, both held in place by a low-level vacuum. Sandia conducted a test program to determine the on-sum performance of the dish. The vacuum setting was varied 8.9- to 17. 2-cm of water column and the vertex to target distance was varied over a range of 15.24 cm to evaluate beam quality. The optimal setting for the vacuum was 11.4 centimeters of water column with the best beam quality of 6.4 centimeters behind the theoretical focal point of the dish. Flux arrays based on slope error from the CIRCE2 computer code were compared to the measured flux array of the dish. The uniformly distributed slope error of 2.3 milliradians was determined as the value that would produce a modeled array with the minimum mean square difference to the measured array. Cold water calorimetry measured a power of 23.3 {plus minus} .3 kWt. Reflectivity change from an initial value of 88.3% to 76.7% over a one year period. 12 refs.

More Details

Advances in the engineering of high field applied-B ion diodes for inertial confinement fusion

Rovang, Dean C.

Pulsed high field magnet coils are an integral part of the applied-B ion diode used in the light ion Inertial Confinement Fusion program at Sandia National Laboratories. Several factors have contributed in recent years to the need for higher magnetic fields of these applied-B ion diodes. These increased magnetic field requirements have precipitated the development of better engineering tools and techniques for use in the design of applied-B ion diodes. This paper describes the status of the applied-B ion diode engineering at Sandia. The design process and considerations are discussed. A systematic approach for maximizing the field achievable from a particular coil system consisting of the capacitor bank, the feeds, and the coil is presented. A coupled electromechanical finite element analysis is also described.

More Details

Rock mechanics issues in completion and stimulation operations

Warpinski, Norman R.

Rock mechanisms parameters such as the in situ stresses, elastic properties, failure characteristics, and poro-elastic response are important to most completion and stimulation operations. Perforating, hydraulic fracturing, wellbore stability, and sand production are examples of technology that are largely controlled by the rock mechanics of the process. While much research has been performed in these areas, there has been insufficient application that research by industry. In addition, there are new research needs that must be addressed for technology advancement.

More Details

Massively parallel computing, C++ and hydrocode algorithms

Robinson, Allen C.

We describe the use of the object-oriented language C++ in the development of a hydrocode simulation system, PCTH. The system is designed to be horizontally and vertically portable from low-end workstations to next generation massively parallel supercomputers. The development of the PCTH system and the issues and rationale considered in moving to the object oriented paradigm will be discussed.

More Details

Experiences in using C++ to develop a next generation strong shock wave physics code

Peery, James S.

The goals and time constraints of developing the next generation shock code, RHALE++, for the Computational Dynamics and Adaptive Structures Department at Sandia National Laboratories have forced the development team to closely examine their program development environment. After a thorough investigation of possible programming languages, the development team has switched from a FORTRAN programming environment to C++. This decision is based on the flexibility, strong type checking, and object-oriented features of the C++ programming language. RHALE++ is a three dimensional, multi-material, arbitrary Lagrangian Eulerian hydrocode. Currently, RHALE++ is being developed for von Neumann, vector, and MIMD/SIMD computer architectures. Using the object oriented features of C++ facilitates development on these different computer architectures since architecture dependences such as inter processor communication, can be hidden in base classes. However, the object oriented features of the language can create significant losses in efficiency and memory utilization. Techniques, such as reference counting, have been developed to address efficiency problems that are inherent in the language. Presently, there has been very little efficiency loss realized on SUN scalar and nCUBE massively parallel computers; however, although some vectorization has been accomplished on CRAY systems, significant efficiency losses exist. This paper presents the current status of using C++ as the development language for RHALE++ and the efficiency that has been realized on SUN, CRAY, and nCUBE systems.

More Details

Structural credit for depleted uranium used in transport casks

Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.; Mcconnell, P.

Depleted uranium (DU) is used in high level radioactive waste transport containers as a gamma shield. The mechanical response of this material has generally not been included in calculations intended to assure that these casks will maintain their containment function during all normal use and accident conditions. If DU could be qualified as a structural component, the thickness of other materials (e.g. stainless steel) in the primary containment boundary could be reduced, thereby allowing a reduction in cask mass and/or an increase in payload capacity. This study was conducted to determine the mechanical behavior of a range of DU alloys in order to extend the limited set of mechanical properties reported in the literature. These mechanical properties were used as the basis for finite element calculations to quantify the potential for claiming structural credit for DU.

More Details

Dependence of fixed-bed reaction processes on bed void distribution

Hobbs, Michael L.

Variations of bed void fraction in a full-scale, reacting, fixed-bed coal gasifier have been deduced from measured axial pressure profiles obtained during gasification of seven coal types ranging from lignite to bituminous. Packed-bed pressure correlations were used to calculate the void fractions based on monotonic polynomial fits of measured pressure profiles. Insights into the fixed-bed combustion processes affected by the void distribution were obtained by a one-dimensional, steady-state, fixed-bed combustion model. Predicted temperature profiles from this model compare reasonably well to experimental data. The bed void distributions are not linear but are perturbed by vigorous reactions in the devolatilization and oxidation zones. Results indicate that a dramatic increase in temperature and associated gas release causes the bed to expand and the gas void space to increase. Increased void space localized in the combustion zone causes the steep temperature gradient to decrease and the location of the maximum temperature to shift. Also, large feed gas flow rates cause the void fraction in the ash zone to increase.

More Details

Crosshole shear-wave seismic monitoring of an in situ air stripping waste remediation process

Elbring, Gregory J.

Crosshole shear-wave seismic surveys have been used to monitor the distribution of injected air in the subsurface during an in situ air stripping waste remediation project at the Savannah River site in South Carolina. To remove the contaminant, in this case TCE`s from a leaking sewer line, two horizontal wells were drilled at depths of 20 m and 52 m. Air was pumped into the lower well and a vacuum was applied to the upper well to extract the injected air. As the air passed through the subsurface, TCE`s were dissolved into the gas and brought out the extraction well. Monitoring of the air injection by crosshole shear wave seismics is feasible due to the changes in soil saturation during injection resulting in a corresponding change in seismic velocities. Using a downhole shear-wave source and clamped downhole receiver, two sets of shear-wave data were taken. The first data were taken before the start of air injection, and the second taken during. The difference in travel times between the two data sets were tomographically inverted to obtain velocity differences. Velocity changes ranging up to 3% were mapped corresponding to saturation changes up to 24%. The distribution of these changes shows a desaturation around the position of the injection well with a plume extending in the direction of the extraction well. Layers with higher clay content show distinctively less change in saturation than the regions with higher sand content.

More Details

Numerical optimization schemes for the design of transportation packages

Witkowski, Walter R.

Numerical optimization has been successfully used to obtain optimal designs in a more efficient and structured manner in many industries. Optimization of sizing variables is already a widely used design tool and even though shape optimization is still an active research topic, significant successes have been achieved for many structural analysis problems. The transportation cask design problem seems to have the formulation and requirements to benefit from numerical optimization. Complex structural, thermal and radiation shielding analyses associated with cask design constraints can be integrated and automated through numerical optimization to help meet the growing needs for safe and reliable shipping containers. Improved overall package safety and efficiency with cost savings in the design and fabrication can also be realized. Sandia National Laboratories (SNL) has the opportunity to be a significant contributor in the development of new sophisticated transportation cask design tools. Current state-of-the-art technology at SNL in the areas of structural mechanics, thermal mechanics, numerical analysis, adaptive finite element analysis, automatic mesh generation, and transportation cask design can be combined to enhance current industry-standard cask design and analysis techniques through numerical optimization.

More Details

Sandia National Laboratories` 18-Inch Actuator: Description, capabilities and operating instructions

Cawlfield, J.L.

This report describes in details the operations necessary to perform a test on the Sandia National Laboratories 18-Inch Actuator. This report is to sever as a training aid for personnel learning to operate the Actuator. A complete description of the construction and operation of the Actuator is also given. The control system, data acquisition system, and high-pressure air supply system are also described. Detailed checklists, with an emphasis on safety, are presented for test operations and for maintenance.

More Details

Sandia National Laboratories Weapon Hazardous Material Identification Process

Ulrich, W.D.

The Hazardous Material Identification Process is a guide to pre-characterization of excess weapon hardware for environmental and safety hazards prior to introduction of the hardware into a waste stream. A procedure for planning predisposal processing of hardware for declassification, demilitarization, and separation/expenditure of certain hazards is included. Final characterization of the resultant waste streams is left to the cognizant waste management agency or organization.

More Details

Recent code studies of RLA, BOLT, and the 100 MV diode

Poukey, J.W.

The 2-D code MAGIC and TRAJ have been used for extensive studies of diode, IFR channel, and accelerating gap problems in the recirculating linear accelerator (RLA). Typical beam parameters use 10--20 kA, 3--4 MeV. This report summarizes recent results from these simulations. We have also designed possible injectors for the proposed BOLT experiment, with typical beams at 100 A, 1.0--1.5 MeV. Finally, we discuss some preliminary diode runs of proposed 100 MV, 500 kA accelerator using the SMILE/HERMES method of adding voltages from many cavities across a single immersed diode gap. 8 refs.

More Details

Plastering: A new approach to automated, 3D hexahedral mesh generation. Progress report 1

Blacker, Ted D.

This report describes the progress of the three-dimensional mesh generation research, using plastering, during the 1990 fiscal year. Plastering is a 3-D extension of the two-dimensional paving technique. The objective is to fill an arbitrary volume with hexahedral elements. The plastering algorithm`s approach to the problem is to remove rows of elements from the exterior of the volume. Elements are removed, one level at a time, until the volume vanishes. Special closure algorithms may be necessary at the center. The report also discusses the common development environment and software management issues. 13 refs.

More Details

Summary of outgassing tests performed in support of the AL-SX (H1616) Program

York II, A.R.; Thornberg, S.M.

The AL-SX/2 and AL-SX/3 are recently certified Type B shipping containers for tritium reservoirs. Both containers consist of an outer stainless steel drum overpack and sealed stainless steel containment vessel. WR reservoirs provide containment of tritium for normal conditions of transport. In accident conditions the containment vessel of the AL-SX must contain the tritium. A variety of reservoirs and materials will be packaged inside the containment vessel. These materials must not produce high pressure gas products that exceed the internal pressure capability of the vessel if the container is in an accident involving fire. This report summarizes outgassing tests performed on various organic materials. Tests of commonly used materials show that increased pressure due to outgassing is not a problem at elevated temperatures that simulate an accident. This report summarizes outgassing tests performed on various materials that may be packaged inside the AL-SX during shipment. These materials (except the getter) are normally a part of the reservoir shipping configuration. The objective of the tests was to determine the temperature that these materials begin to generate high pressure gaseous products.

More Details

1991 rocket-triggered lightning test of the DOD Security Operations Test Site (SOTS) munitions storage bunker, Ft. McClellan, Alabama. Volume 1

Fisher, R.J.

During June and July 1991, the Sandia Transportable Lightning Instrumentation Facility (SATTLIF) was fielded at the Department of Defense (DoD) Security Operations Test Site (SOTS) at Ft. McClellan, Alabama. Nine negative cloud-to-ground lightning flashes were artifically triggered to designated locations on Igloo 2, a weapons storage bunker specially prepared to allow instrumentation access to various of its structural and electrical system elements. Simultaneous measurements of the incident flash currents and responses at 24 test points within the igloo and its grounding counterpoise network were recorded under lightning attachments to the front and rear air terminals of the structure`s lightning protection system. In Volume I the test is described in detail. The measured data are summarized and discussed. Appendix A contains the full set of recorded incident flash currents, while Appendix B presents the set of largest responses measured at each test point, for both front and rear attachments to the structure. As part of these tests, 0.050-in-thick stainless steel, 0.08-in copper, and 0.08-in titanium samples were exposed to triggered flash currents. In this way, damage spots created by direct-strike triggered lightning have been obtained, along with the measurement of the return-stroke and continuing currents that produced them. These data points, along with similar ones on aluminum and ferrous steel obtained during 1990 will be used as benchmarks against which to quantify the fidelity of burnthrough testing achievable Sandia`s advanced laboratory lightning simulator.

More Details

Plasma channel generation using low energy electron beams

Kiekel, P.D.

A channel ions can focus and guide a relativistic electron beam. This report discuses the generation of plasma channels using magnetically confined low energy electron beams in a low pressure gas. The most significant advantages of these channels are that any gas can be ionized and that they can easily be made to follow a curved path. The major advantages are that the channel is less well confined than a laser produced channel and that a small solenoidal magnetic field is required. This report is intended to be a guide for those technicians and scientists who need to assemble and operate an e-beam generated plasma channel system. Hardware requirements are discussed in detail. There are brief discussions of operating techniques, channel diagnostic, and channel characteristics.

More Details

18 W/m{sup 2} mockup for defense high-level waste (Rooms A): In situ data report. Volume 2, Thermal response gages, February 1985--June 1990

Munson, Darrell E.

Data are presented from the 18 W/m{sup 2} Mockup for Defense High-Level Waste, a very large scale in situ test fielded underground at the Waste Isolation Pilot Plant (WIPP). These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. The results in this report give measured data from the thermal response gages, i.e., thermocouples, flux meters, and heater power gages emplaced in the test. Construction of the test began in June 1984; gage data in this report cover the complete test duration, that is, to June 1990.

More Details

Development of stimulation diagnostic technology. Annual report, May 1990--December 1991

Warpinski, N.R.; Lorenz, J.C.

The objective of this project is to apply Sandia`s expertise and technology towards the development of stimulation diagnostic technology in the areas of in situ stress, natural fracturing, stimulation processes and instrumentation systems. Initial work has concentrated on experiment planning for a site where hydraulic fracturing could be evaluated and design models and fracture diagnostics could be validated and improved. Important issues have been defined and new diagnostics, such as inclinometers, identified. In the area of in situ stress, circumferential velocity analysis is proving to be a useful diagnostic for stress orientation. Natural fracture studies of the Frontier formation are progressing; two fracture sets have been found and their relation to tectonic events have been hypothesized. Analyses of stimulation data have been performed for several sites, primarily for in situ stress information. Some new ideas in stimulation diagnostics have been proposed; these ideas may significantly improve fracture diagnostic capabilities.

More Details

Groundwater flow code verification ``benchmarking`` activity (COVE-2A): Analysis of participants` work

Barnard, R.

The Nuclear Waste Repository Technology Department at Sandia National Laboratories (SNL) is investigating the suitability of Yucca Mountain as a potential site for underground burial of nuclear wastes. One element of the investigations is to assess the potential long-term effects of groundwater flow on the integrity of a potential repository. A number of computer codes are being used to model groundwater flow through geologic media in which the potential repository would be located. These codes compute numerical solutions for problems that are usually analytically intractable. Consequently, independent confirmation of the correctness of the solution is often not possible. Code verification is a process that permits the determination of the numerical accuracy of codes by comparing the results of several numerical solutions for the same problem. The international nuclear waste research community uses benchmarking for intercomparisons that partially satisfy the Nuclear Regulatory Commission (NRC) definition of code verification. This report presents the results from the COVE-2A (Code Verification) project, which is a subset of the COVE project.

More Details

Estimation of the impact of water movement from sewage and settling ponds near a potential high level radioactive waste repository in Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

Fewell, M.E.

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and the accompanying ponds used for the storage of sewage water and muck water removed from construction operations. The information in this report pertains to the two-dimensional numerical calculations modelling the movement of sewage and settling pond water, and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing Appendix I of the Exploratory Studies Facility Design Requirements document (ESF DR) for the Yucca Mountain Site Characterization Project.

More Details

Design and implementation of the site and engineering properties database; Yucca Mountain Site Characterzation Project

Krebs-Jespersen, M.L.

The Yucca Mountain Site Characterization Project (YMP) is conducting studies to determine whether the Yucca Mountain site in southern Nevada will meet regulatory criteria for a potential mined geologic disposal system for high-level radioactive waste. Data gathered as part of these studies must be compiled and tabulated in a controlled manner for use in design and performance analyses. An integrated data management system has been developed to facilitate this process; this system relies on YMP participants to share in the development of the database and to ensure the integrity of the data. The site and Engineering Properties Database (SEPDB) is unique in that, unlike most databases where one data set is stored for use by one defined user, the SEPDB stores different sets of data which must be structured so that a variety of users can be given access to the information. All individuals responsible for activities supporting the license application should, to the extent possible,work with the same data and the same assumptions. For this reason, it is important that these data sets are readily accessible, comprehensive, and current. The SEPDB contains scientific and engineering data for use in performance assessment and design activities. These data sets currently consist of geologic, hydrologic, and rock properties information from drill holes and field measurements. The users of the SEPDB include engineers and scientists from several government research laboratories (Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories), the US Geological Survey, and several government contractors. This manuscript describes the detailed requirements, contents, design, and status of the SEPDB, the procedures for submitting data to and/or requesting data from the SEPDB, and a SEPDB data dictionary (Appendix A) for defining the present contents.

More Details

Recent characterization activities of Midway Valley as a potential repository surface facility site

Gibson, J.D.

Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier).

More Details

An overview of the Yucca Mountain Global/Regional Climate Modeling Program

Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

The US Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as ``geologic information``) of the Yucca Mountain site. This information will be used to determine if a mined geologic disposal system (MGDS) capable of isolating high-level radioactive waste without adverse effects to public health and safety over 10,000 years, as required by regulations 40 CFR Part 191 and 10 CFR Part 60, could be constructed at the Yucca Mountain site. Forecasts of future climates conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change will follow past patterns. In this approach, paleclimate records will be analyzed to estimate the nature, timing, and probability of occurrence of certain climate states such as glacials and interglacials over the next 10,000 years. For a given state, key climate parameters such as precipitation and temperature will be assumed to be the same as determined from the paleoclimate data. The numerical approach, which is the primary focus of this paper, involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain.

More Details

Topaz II Preliminary Safety Assessment

Marshall, Albert C.

The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz 11 space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safely assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the US with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

More Details

Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada

Gibson, J.D.

This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository.

More Details

Supporting hydration calculations for small- to large-scale seal tests in unsaturated tuff

Fernandez, Joseph A.

The design of cementitious repository seals requires an understanding of cement hydration effects in developing a tight interface zone between the rock and the seal. For this paper, a computer code, SHAFT.SEAL, is used to model early-age cement hydration effects and performs thermal and thermomechanical analysis of cementitious seals. The model is described, and then used to analyze for the effects of seal size, rock temperature and placement temperature. The model results assist in selecting the instrumentation necessary for progressive evaluation of seal components and seal-system tests. Also, the results identify strategies for seal emplacement for a series of repository seal tests for the Yucca Mountain Site Characterization Project (YMP).

More Details

A comparison of preconditioned nonsymmetric Krylov methods on a large-scale MIMD machine

Shadid, John N.

Many complex physical processes are modeled by coupled systems of partial differential equations (PDEs). Often, the numerical approximation of these PDEs requires the solution of large sparse nonsymmetric systems of equations. In this paper we compare the parallel performance of a number of preconditioned Krylov subspace methods on a large-scale MIMD machine. These methods are among the most robust and efficient iterative algorithms for the solution of large sparse linear systems. They are easy to implement on various architectures and work well on a wide variety of important problems. In this comparison we focus on the parallel issues associated with both local preconditioners (those that combine information from the entire domain). The various preconditioners are applied to a variety of PDE problems within the GMRES, CCGS, BiCGSTAB, and QMRCGS methods. Conclusions are drawn on the effectiveness of the different schemes based on results obtained from a 1024 processor a nCUBE 2 hypercube.

More Details

Plan on test to failure of a steel containment vessel model

Takumi, Kenji; Nonaka, Akira; Umeki, Katsuhiko; Yoshida, Yasushi; Oyamada, Osamu; Furukawa, Hideyasu; Saito, Koichi; Costello, J.F.; Von Riesemann, W.A.; Parks, M.B.; Watson, R.A.

This paper describes the plan for a test to failure of a steel containment vessel model. The test specimen proposed for this test is a scale model representing certain features of an improved BWR MARK-2 containment vessel. The objective of this test is to investigate the ultimate structural behavior of the model by incrementally increasing the internal pressure, at ambient temperature, until failure occurs. Pre- and posttest analyses will be conducted to predict and evaluate the results of this test. The main objective of these analyses to validate, by comparisons with the experimental data, the analytical methods used to evaluate the structural behavior of an actual containment vessel under severe accident conditions. This experiment is part of a cooperative program between the Nuclear Power Engineering Corporation (NUPEC), the United States Nuclear Regulatory Commission (NRC), and Sandia National Laboratories (SNL).

More Details

Downhole memory-logging tools

Lysne, P.

Logging technologies developed hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (i) there is a general lack of vetted, high-temperature instrumentation, and (ii) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions.'' Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of potassium, uranium and thorium will be available in about on year, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A second tool designed to sample fluids at conditions exceeding 400{degrees}C is in the proposal stage. Partnerships are being formed between the geothermal industry, scientific drilling programs, and the national laboratories to define and develop inversion algorithms relating raw tool data to more pertinent information. 8 refs.

More Details

An investigation of liner tearing in reinforced concrete reactor containment buildings: Comparison of experimental and analytical results

Spletzer, Barry L.

The overpressurization of a 1:6 scale reinforced concrete containment building demonstrated that liner tearing is a plausible failure mode in such structures under severe accident conditions. A combined experimental and analytical program was developed to determine the important parameters that affect liner tearing and to develop reasonably simple analytical methods for predicting when tearing will occur. Three sets of test specimens were designed to allow individual control over and investigation of the mechanisms believed to be important in causing failure of the liner plate. The series of tests investigated the effect on liner tearing produced by the anchorage system, the loading conditions, and the transition in thickness of the liner. Before testing, the specimens were analyzed using two- and three-dimensional finite element models. Based on the analysis, the failure mode and corresponding load conditions were predicted for each specimen. Test data and posttest examination of test specimens shows mixed agreement with the analytical predictions with regard to failure mode and specimen response for most tests. Many similarities were also observed between the response of the liner in the 1:6 scale reinforced concrete containment model and the response of the test specimens. This work illustrates the fact that the failure mechanism of a reinforced concrete containment building can be greatly influenced by details of liner and anchorage system design. Furthermore, it significantly increases the understanding of containment building response under severe accident conditions.

More Details

An overview of acoustic telemetry

Drumheller, Douglas S.

Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.

More Details

Auger spectroscopy and electronically-stimulated surface processes

Physica Scripta

Jennison, Dwight R.

Electronic excitations in adsorbate layers stimulate desorption and dissociation of adsorbed molecules as well as chemical reactions between adsorbates. The highest-probability stimulated processes produce neutral desorbates and determine how surface composition is altered by electron or photon radiation. A basic understanding has emerged, due largely to laser resonance-enhanced multi-photon ionization (REMPI) experiments, which provide quantum-state resolution of the gas-phase products. Auger phenomena enter this understanding in several ways. For example, CVV Auger spectroscopy determines the screened hole-hole interaction, U, in adsorbates, which in turn provides insight into the degree of charge-transfer screening from the substrate. In those systems where screening charge is used in excitation Auger decay, screening directly determines the lifetime, which in turn can exponentially affect the yield. Reductions in screening, e.g. induced by coadsorption of electro-negative species, thus can result in giant yield enhancements. As separate issues, a finite U may prevent the fast resonant decay and thus increase the yield from two-hole excitations, as has been suggested for NO2 dissociation on Pt(lll), or may assist in the localization (self-trapping) of two-hole excitations in dense adsorbate layers, as apparently is the case for NO desorption from the same surface. The latter causes the yields from one- and two-hole excitations to differ in their coverage dependence. Finally, CVV Auger spectroscopy, of course, measures the energies of two-hole excitations, which can be correlated with observed stimulated thresholds. © 1992 IOP Publishing Ltd.

More Details

High Frequency Response Of Fiber Current Sensors With Noncircular And Nonconcentrated Coils

Optics InfoBase Conference Papers

Cernosek, R.W.

The frequency response of the Faraday rotation in fiber current sensors is computed and measured for sensor coils of noncircular cross section and with displaced coil and conductor axes. Resonances are observed at higher frequencies with magnitudes approaching that of the low frequency response. Narrowband current sensors at frequencies above 100 MHz are reported.

More Details

Development of a brittle fracture acceptance criterion for the International Atomic Energy Agency (IAEA)

Sorenson, Ken B.; Salzbrenner, Richard; Nickell, Robert E.

An effort has been undertaken to develop a brittle fracture acceptance criterion for structural components of nuclear material transportation casks. The need for such a criterion was twofold. First, new generation cask designs have proposed the use of ferritic steels and other materials to replace the austenitic stainless steel commonly used for structural components in transport casks. Unlike austenitic stainless steel which fails in a high-energy absorbing, ductile tearing mode, it is possible for these candidate materials to fail via brittle fracture when subjected to certain combinations of elevated loading rates and low temperatures. Second, there is no established brittle fracture criterion accepted by the regulatory community that covers a broad range of structural materials. Although the existing IAEA Safety Series {number sign}37 addressed brittle fracture, its the guidance was dated and pertained only to ferritic steels. Consultant's Services Meetings held under the auspices of the IAEA have resulted in a recommended brittle fracture criterion. The brittle fracture criterion is based on linear elastic fracture mechanics, and is the result of a consensus of experts from six participating IAEA-member countries. The brittle fracture criterion allows three approaches to determine the fracture toughness of the structural material. The three approaches present the opportunity to balance material testing requirements and the conservatism of the material's fracture toughness which must be used to demonstrate resistance to brittle fracture. This work has resulted in a revised Appendix IX to Safety Series {number sign}37 which will be released as an IAEA Technical Document within the coming year.

More Details

Hypersonic flight testing

AIAA 17th Aerospace Ground Testing Conference, 1992

Williamson, W.

As part of the design process for a hypersonic vehicle, it is necessary to predict the aerodynamic and aerothermodynamic environment for flight conditions. This involves combining results obtained from ground testing with analytical modeling to predict the aerodynamics and heating for all conditions of interest. The question which always arises is, how well will these models predict what is actually seen in a flight environment? This paper will briefly address ground-testing and analytical modeling and discuss where each is appropriate, and the associated problems with each area. It will then describe flight test options as well as instrumentation currently available and show how flight tests can be used to validate or improve models. Finally, several results will be shown to indicate areas where ground testing and modeling alone are inadequate to accurately predict hypersonic aerodynamics and aerothermodynamics.

More Details

Generation, control, and transport of a 19-MeV, 700-kA pulsed electron beam

Sanford, Thomas W.

We show experimentally and theoretically that the generation of the 13-TW Hermes III electron beam can be accurately monitored, and that the beam can be accurately directed onto a high-Z target to produce a wide variety of bremsstrahlung patterns. This control allows the study of radiation effects induced by gamma rays to be extended into new parameters regimes. Finally, we show that the beam can be stably transported in low-pressure gas cells.

More Details

Propagation of dissolution/precipitation waves in porous media

Novak, C.F.

The transport of a chemically reactive fluid through a permeable medium is governed by many classes of chemical interactions. Dissolution/precipitation (D/P) reactions are among the interactions of primary importance because of their significant influence on the mobility of aqueous ions. In general, D/P reactions lead to the propagation of coherent waves. This paper provides an overview of the types of wave phenomena observed in one-dimensional (1D) and two-dimensional (2D) porous media for systems in which mineral D/P is the dominant type of chemical reaction. It is demonstrated that minerals dissolve in sharp waves in 1D advection-dominated transport, and that these waves separate zones of constant chemical compositions in the aqueous and mineral phases. Analytical solutions based on coherence methods are presented for solving 1D advection-dominated transport problems with constant and variable boundary conditions. Numerical solutions of diffusion-dominated transport in porous media show that sharp D/P fronts occur in this system as well. A final example presents a simple dual-porosity system with advection in an idealized fracture and solute diffusion into an adjacent porous matrix. The example illustrates the delay of contaminant release from the 2D domain due to a combination of physical retardation and chemical retardation.

More Details

Joint computational and experimental aerodynamics research on a hypersonic vehicle

Oberkampf, William L.

A closely coupled computational and experimental aerodynamics research program was conducted on a hypersonic vehicle configuration at Mach 8. Aerodynamic force and moment measurements and flow visualization results were obtained in the Sandia National Laboratories hypersonic wind tunnel for laminar boundary layer conditions. Parabolized and iterative Navier-Stokes simulations were used to predict flow fields and forces and moments on the hypersonic configuration. The basic vehicle configuration is a spherically blunted 10{degrees} cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap can be attached so that deflection angles of 10{degrees}, 20{degrees}, and 30{degrees} can be obtained. Comparisons are made between experimental and computational results to evaluate quality of each and to identify areas where improvements are needed. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of computational aerodynamics codes. 22 refs.

More Details

Channel Flow of a Concentrated Suspension

Studies in Applied Mechanics

Mctigue, David F.

A theory for creeping flow of concentrated suspensions is described that takes into account the fluctuations of particles about their mean motion. The intensity of the velocity fluctuations is characterized by an internal field analogous to the temperature in classical kinetic theories, and governed by a balance law for the fluctuation energy. Explicit forms are posed for the viscosity, conductivity, dissipation, and pressure as functions of the temperature and mean interparticle separation. Approximate solutions are found for the temperature, separation, and mean velocity fields in flow between parallel plates. Qualitative behavior comparable to experimental observations is predicted: particle fluctuations and the mean shearing are confined to a region near the channel wall, while a plug-like region prevails in the center. © 1992 Elsevier B.V.

More Details

The formation of a yield-surface vertex in rock

33rd U.S. Symposium on Rock Mechanics, USRMS 1992

Olsson, William A.

Microstructural models of deformation of polycrystalline materials suggest that inelastic deformation leads to the formation of a corner or vertex at the current load point. This vertex can cause the response to non-proportional loading to be more compliant than predicted by the smooth yield-surface idealization. Combined compression-torsion experiments on Tennessee marble indicate that a vertex forms during inelastic flow. An important implication is that strain localization by bifurcation occurs earlier than predicted by bifurcation analysis using isotropic hardening.

More Details

Localization studies under triaxial conditions

33rd U.S. Symposium on Rock Mechanics, USRMS 1992

Holcomb, David J.

Acoustic emissions and conventional strain measurements were used to follow the evolution of ihc damage surface and plastic potential in a limestone under triaxial compression. Confining pressures were chosen such that macroscopically, the limestone exhibited both brittle and ductile behavior. The parameters derived are useful for modeling the deformation of a pressure-dependent material and for computing when localization would occur.

More Details

X-ray observations of boiling sodium in a reflux-pool-boiler solar receiver

Moreno, James B.

X-ray observations of boiling sodium in a 75-kW{sub t} reflux-pool-boiler solar receiver operating at up to 800{degrees}C were carried out. Both cinematographic and quantitative observations were made. From the cinematography, the pool free surface was observed before and during the start of boiling. During boiling, the free surface rose out of the field of view, and chaotic motion was observed. From the quantitative observations, void fraction in pencil-like probe volumes was inferred, using a linear array of detectors. Useful data were obtained from three of the eight probe volumes. Information from the other volumes was masked by scattered radiation. During boiling, time-averaged void fractions ranged from 0.6 to 0.8. During hot restarts, void fractions near unity occurred and persisted for up to {1/2} second. 17 refs.

More Details

Application of fracture mechanics in geological materials1

33rd U.S. Symposium on Rock Mechanics, USRMS 1992

Chen, Er-Ping C.

Application of conventional fracture mechanics concepts to treat crack growth and failure problems in geological media is discussed in this paper. Conventional fracture mechanics methods were developed mainly for metallic materials which exhibit nonlinearity associated mainly with plasticity type responses. Thus, these are not directly applicable to geological materials whose inelastic responses originate from inherent large-scale heterogenities, microcracking, strain softening, etc. Proposed fracture mechanics methods for geological materials and their associated problems are discussed. To demonstrate the utility of fracture mechanics concepts in geological applications, examples involving multiple-fracture generation in tight gas formations and oil shale blasting design are presented.

More Details

Linearizing the joint torque characteristics of an electric direct-drive robot for high performance control of in-contact operations

Muir, P.F.

Many robot control algorithms for high performance in-contact operations including hybrid force/position, stiffness control and impedance control approaches require the command of the joint torques. However, most commercially available robots do not provide joint torque command capabilities. The joint command at the user level is typically position or velocity and at the control developer level is voltage current, or pulse-width, and the torque generated is a nonlinear function of the command and joint position. To enable the application of high performance in-contact control algorithms to commercially available robots, and thereby facilitate technology transfer from the robot control research community to commercial applications, a practical methodology has been developed to linearize the torque characteristics of electric motor-amplifier combinations. A four degree-of-freedom Adept 2 robot, having pulse-width modulation amplifiers and both variable reluctance and brushless DC motors, is converted to operate from joint torque commands to demonstrate the methodology. The average percentage torque deviation over the command and position ranges is reduced from as much as 76% to below 5% for the direct-drive joints 1, 2 and 4 and is cut by one half in the remaining ball-screw driven joint 3. 16 refs., 16 figs., 2 tabs.

More Details

Light emission microscopy

Soden, J.M.; Cole Jr., E.I.

Light emission microscopy is now currently used in most integrated circuit (IC) failure analysis laboratories. This tutorial is designed to benefit both novice and experienced failure analysts by providing an introduction to light emission microscopy as well as information on new techniques, such as the use of spectral signatures. The use of light emission for accurate identification and spatial localization of physical defects and failure mechanisms is presented. This includes the analysis of defects such as short circuits which do not themselves emit light. The importance of understanding the particular IC design and applying the correct electrical stimulus is stressed. A video tape is used to show light emission from pn junctions, MOS transistors, test structures, and CMOS ICs in static and dynamic electrical stimulus conditions. 27 refs.

More Details

Center of pressure calculations for a bent-axis vehicle

Rutledge, W.H.

Bent-axis maneuvering vehicles provide a unique type of control for a variety of supersonic and hypersonic missions. Unfortunately, large hinge moments, incomplete pitching moment predictions, and a misunderstanding of corresponding center of pressure calculations have prevented their application. A procedure is presented for the efficient design of bent-axis vehicles given an adequate understanding of origins of pitching moment effects. In particular,sources of pitching moment contributions will be described including not only normal force, but inviscid axial force and viscous effects as well. Off-centerline center of pressure effects are first reviewed for symmetric hypersonic sphere-cone configurations. Next the effects of the bent-axis geometry are considered where axial force, acting on the deflected tail section, can generate significant pitching moment components. The unique relationship between hinge moments and pitching moments for the bent-axis class of vehicles is discussed. 15 refs.

More Details

Scanning electron microscopy techniques

Cole Jr., E.I.

The scanning electron microscope (SEM) has become as standard a tool for IC failure analysis as the optical microscope, with improvements in existing SEM techniques and new techniques being reported regularly. This tutorial has been designed to benefit both novice and experienced failure analysts by reviewing several standard as well as new SEM techniques used for failure analysis. Advanced electron-beam test systems will be covered briefly; however all techniques discussed may be performed on any standard SEM. Topics to be covered are (1) standard techniques: secondary electron imaging for surface topology, voltage contrast, capacitive coupling voltage contrast, backscattered electron imaging, electron beam induced current imaging, and x-ray microanalysis and (2) new SEM techniques: novel voltage contrast applications, resistive contrast imaging, biased resistive contrast imaging, and charge-induced voltage alteration. Each technique will be described in terms of the information yielded, the physics behind technique use, any special equipment and/or instrumentation required to implement the technique, the expertise required to implement the technique, possible damage to the IC as a result of using the technique, and examples of using the technique for failure analysis. 11 refs.

More Details

Testing of double-layer capacitors for high reliability applications

Proceedings of the 35th International Power Sources Symposium

Clark, N.H.

Technologies that use carbon and mixed metal oxides as the electrode material have been pursued for the purpose of producing high-reliability double-layer capacitors (DLCs). The author demonstrates their environmental stability in temperature, shock, vibration, and linear acceleration. She reviews the available test data for both types of DLCs under these stress conditions. This study suggests that mixed metal oxides and carbon-based double-layer capacitors can survive robust environments if packaged properly, and that temperature decreases performance of double-layer capacitors.

More Details
Results 95201–95250 of 96,771
Results 95201–95250 of 96,771