NWM Cloud Environment and Application Demonstration
Abstract not provided.
Abstract not provided.
Abstract not provided.
The DOE-NE NWM Cloud was designed to be a generic set of tools and applications for any nuclear waste management program. As policymakers continue to consider approaches that emphasize consolidated interim storage and transportation of spent nuclear fuel, a gap analysis of the tools and applications provided for spent nuclear fuel and high-level radioactive waste disposal in comparison those needed for siting, licensing, and developing a consolidated interim storage facility and/or for a transportation campaign will help prepare DOE for implementing such potential policy direction. This report evaluates the points of alignment and potential gaps between the applications on the NWM Cloud that supported SNF disposal project, and the applications needed to address QA requirements and for other project support needs of an SNF storage project.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report presents a comparative analysis of spent nuclear fuel management options to support the U.S. Department of Energy (DOE). Specifically, a set of scenarios was constructed to represent a range of possible combinations of alternative spent fuel management approaches. Analyses were performed to provide simple and credible estimates of relative costs to the U.S. government and to the nuclear utilities for moving forward with each scenario. The analyses of alternatives and options related to spent nuclear fuel management presented in this report are based on technical and programmatic considerations and do not include an evaluation of relevant regulatory and legal considerations (e.g., needs for new or modified regulations or legislation). This report has been prepared for informational and comparison purposes only and should not be construed as a determination of the legal permissibility of specific alternatives and options. No inferences should be drawn from this report regarding future actions by DOE. To the extent this report conflicts with provisions of the Standard Contract, those provisions prevail.
Abstract not provided.
Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.
A closed Brayton cycle recirculates the working fluid, and the turbine exhaust is used in a recuperating heat exchanger to heat the turbine feed. A "supercritical cycle' is a closed Brayton cycle in which the working fluid, such as supercritical carbon dioxide (s-0O2), is maintained near the critical point during the compression phase of the cycle. The key property of the fluid near its critical point is its higher gas density, closer to that of a liquid than of a gas, allowing for the pumping power in the compressor to be significantly reduced, which results in thermal efficiency that is significantly improved over the efficiency attainable in an ideal-gas Brayton cycle. Another advantage of using a supercritical cycle is that the overall footprint of the power-conversion system can be significantly reduced, as compared to the same power output of a steam-Rankine cycle, due to the high pressure in the system and resulting low volumetric flow rate. This allows for the heat-rejection heat exchanger and turbine to be orders of magnitude smaller than for similar power output steam-Rankine systems. Other potential advantages are the reduced use of water, not only due to the increased efficiency, but due also to the fact that the heat rejection temperature is significantly higher than for steam-Rankine systems, allowing for significant heat rejection directly to air. In 2006, Sandia National Laboratories (SNL), recognizing these potentially significant advantages of a higher efficiency power cycle, used internal funds to establish a testing capability and began partnering with the U.S. Department of Energy Office of Nuclear Energy to develop a laboratory-scale test assembly to show the viability of the underlying science and demonstrate system performance. Since that time, SNL has generated over 100 kW-hours of energy, verified cycle performance, and developed cycle controls and maintenance procedures. The test assembly has successfully operated in different configurations (simple Brayton, waste heat cycle, and recompression) and tested additives to the s-CO2 working fluid. However, challenges remain to confirm viability of existing components and suitability of materials, demonstrate that theoretical efficiencies are achievable, and integrate and scale up existing technologies to be suitable for a range of applications.