Validating Agent Based Models Through Virtual Worlds
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
In this paper we performed analysis of speech communications in order to determine if we can differentiate between expert and novice teams based on communication patterns. Two pairs of experts and novices performed numerous test sessions on the E-2 Enhanced Deployable Readiness Trainer (EDRT) which is a medium-fidelity simulator of the Naval Flight Officer (NFO) stations positioned at bank end of the E-2 Hawkeye. Results indicate that experts and novices can be differentiated based on communication patterns. First, experts and novices differ significantly with regard to the frequency of utterances, with both expert teams making many fewer radio calls than both novice teams. Next, the semantic content of utterances was considered. Using both manual and automated speech-to-text conversion, the resulting text documents were compared. For 7 of 8 subjects, the two most similar subjects (using cosine-similarity of term vectors) were in the same category of expertise (novice/expert). This means that the semantic content of utterances by experts was more similar to other experts, than novices, and vice versa. Finally, using machine learning techniques we constructed a classifier that, given as input the text of the speech of a subject, could identify whether the individual was an expert or novice with a very low error rate. By looking at the parameters of the machine learning algorithm we were also able to identify terms that are strongly associated with novices and experts. © 2011 Springer-Verlag.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AAAI Fall Symposium - Technical Report
Attitudes play a significant role in determining how individuals process information and behave. In this paper we have developed a new computational model of population wide attitude change that captures the social level: how individuals interact and communicate information, and the cognitive level: how attitudes and concept interact with each other. The model captures the cognitive aspect by representing each individuals as a parallel constraint satisfaction network. The dynamics of this model are explored through a simple attitude change experiment where we vary the social network and distribution of attitudes in a population. Copyright © 2010, Association for the Advancement of Artificial Intelligence. All rights reserved.