Publications

3 Results

Search results

Jump to search filters

A Framework for Closed-Loop Optimization of an Automated Mechanical Serial-Sectioning System via Run-to-Run Control as Applied to a Robo-Met.3D

JOM

Gallegos-Patterson, D.; Ortiz, Kendric R.; Danielson, C.; Madison, Jonathan D.; Polonsky, Andrew P.

Optimization of automated data collection is gaining increased interest for the purposes of enabling closed-loop self-correcting systems that inherently maximize operational efficiencies and reduce waste. Many data collection systems have several variables which influence data accuracy or consistency and which can require frequent user interaction to be monitored and maintained. Operating upon a Robo-MET.3D™ automated mechanical serial-sectioning system, a run-to-run control algorithm has been developed to accelerate data collection and reduce data inconsistency. Using historical data amassed over a decade of experiments, a linear regression model of the deterministic system dynamics is created and used to employ a run-to-run control algorithm that optimizes selected system inputs to reduce operator intervention and increase efficacy while reducing variance of system output.

More Details

Constrained Run-to-Run Control for Precision Serial Sectioning

2022 IEEE Conference on Control Technology and Applications, CCTA 2022

Gallegos-Patterson, D.; Ortiz, Kendric R.; Madison, Jonathan D.; Polonsky, Andrew P.; Danielson, Claus

This paper presents a run-to-run (R2R) controller for mechanical serial sectioning (MSS). MSS is a destructive material analysis process which repeatedly removes a thin layer of material and images the exposed surface. The images are then used to gain insight into the material properties and often to construct a 3-dimensional reconstruction of the material sample. Currently, an experience human operator selects the parameters of the MSS to achieve the desired thickness. The proposed R2R controller will automate this process while improving the precision of the material removal. The proposed R2R controller solves an optimization problem designed to minimize the variance of the material removal subject to achieving the expected target removal. This optimization problem was embedded in an R2R framework to provide iterative feedback for disturbance rejection and convergence to the target removal amount. Since an analytic model of the MSS system is unavailable, we adopted a data-driven approach to synthesize our R2R controller from historical data. The proposed R2R controller is demonstrated through simulations. Future work will empirically demonstrate the proposed R2R through experiments with a real MSS system.

More Details
3 Results
3 Results