Publications

Results 76–100 of 126

Search results

Jump to search filters

Unsteady shock motion in a transonic flow over a wall-mounted hemisphere

43rd Fluid Dynamics Conference

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Particle image velocimetry measurements have been conducted for a Mach 0.8 flow over a wall-mounted hemisphere. The flow is strongly separated, with a mean recirculation length exceeding 5 δ and a mean reverse velocity of -0.2 U∞. The shock foot was found to typically sit just forward of the apex of the hemisphere and move within a range of about ±10 deg. Conditional averages based upon the shock foot location show that the separation shock is positioned upstream along the hemisphere surface when reverse velocities in the recirculation region are strong and is located downstream when they are weaker. The recirculation region appears smaller when the shock is located farther downstream. No correlation was detected of the incoming boundary layer with the shock position, nor with the wake recirculation velocities. These observations are consistent with recent studies concluding that for large strong separation regions, the dominant mechanism is the instability of the separated flow rather than a direct influence of the incoming boundary layer.

More Details

Experimental investigation of fluid-structure interactions in compressible cavity flows

43rd Fluid Dynamics Conference

Wagner, Justin W.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick H.; Spillers, Russell W.; Henfling, John F.; Mayes, R.L.

Experiments were performed to understand the complex fluid-structure interactions that occur during internal store carriage. A cylindrical store was installed in a cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 - 2.5 and the incoming turbulent boundary layer thickness was about 30-40% of the cavity depth. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers and laser Doppler vibrometry provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, as previously determined with modal hammer tests, and it exhibited a directional dependence to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, while a spanwise response was observed only occasionally. The streamwise and wall-normal responses were attributed to the known pressure gradients in these directions. Furthermore, spanwise vibrations were greater at the downstream end of the cavity, attributable to decreased levels of flow coherence near the aftwall. Collectively, the data indicate the store response to be dependent on direction of vibration and position along the length of the store.

More Details

High-speed schlieren imaging of disturbances in a transitional Hypersonic Boundary Layer

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

A high-speed schlieren system was developed for the Sandia Hypersonic Wind Tunnel. Schlieren images were captured at 290 kHz and used to study the growth and breakdown of second-mode instabilities into turbulent spots on a 7° cone. At Mach 5, wave packets would intermittently occur and break down into isolated turbulent spots surrounded by an otherwise smooth, laminar boundary layer. At Mach 8, the boundary layer was dominated by second-mode instabilities which would break down into larger regions of turbulence. Second-mode waves surrounded these turbulent patches as opposed to the smooth laminar flow seen at Mach 5. Detailed pressure and thermocouple measurements were also made along the cone at Mach 5, 8 and 14, in a separate tunnel entry. These measurements give an average picture of the transition behavior that complements the intermittent behavior captured by the schlieren system. At Mach 14, the boundary-layer remained laminar so the transition process could not be studied. However, the first measurements of second-mode waves were made in HWT-14.

More Details

Simultaneous pressure measurements and high-speed schlieren imaging of disturbances in a transitional hypersonic boundary layer

43rd Fluid Dynamics Conference

Casper, Katya M.; Beresh, Steven J.; Wagnild, Ross M.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

High-frequency pressure sensors were used in conjunction with a high-speed schlieren system to study the growth and breakdown of boundary-layer disturbances into turbulent spots on a 7° cone in the Sandia Hypersonic Wind Tunnel. At Mach 5, intermittent low-frequency disturbances were observed in the schlieren videos. High-frequency secondmode wave packets would develop within these low-frequency disturbances and break down into isolated turbulent spots surrounded by an otherwise smooth, laminar boundary layer. Spanwise pressure measurements showed that these packets have a narrow spanwise extent before they break down. The resulting turbulent fluctuations still had a streaky structure reminiscent of the wave packets. At Mach 8, the boundary layer was dominated by secondmode instabilities that extended much further in the spanwise direction before breaking down into regions of turbulence. The amplitude of the turbulent pressure fluctuations was much lower than those within the second-mode waves. These turbulent patches were surrounded by waves as opposed to the smooth laminar flow seen at Mach 5. At Mach 14, second-mode instability wave packets were also observed. Theses waves had a much lower frequency and larger spanwise extent compared to lower Mach numbers. Only low freestream Reynolds numbers could be obtained, so these waves did not break down into turbulence.

More Details

Turbulence of a fin trailing vortex in subsonic compressible flow

AIAA Journal

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.

Stereoscopic Particle Image Velocimetry data of a trailing vortex shed from a tapered fin installed on a wind-tunnel wall have been analyzed to provide turbulent statistics. After correcting for the effects of vortex meander, the radial and azimuthal turbulent normal stresses are smallest at the vortex center, reaching a maximum around its periphery to produce an annulus of turbulence. Conversely, the streamwise turbulent stress peaks at the vortex center. The ringed turbulent structure is consistent with rotation stabilizing the flow in the vortex core, whereas a fluctuating axial velocity contributes to vortex decay. All three turbulent normal stresses decay with downstream distance. Turbulent shear stresses also decay with downstream distance but possess a relatively small magnitude, suggesting minimal coupling between turbulent velocity components. The vortex turbulence is strongly anisotropic in a manner that varies greatly with spatial position. As the vortex strength is reduced, the axial turbulent normal stress diminishes more sharply than the two cross-plane turbulent normal stresses, possibly because the latter components are influenced by external turbulence spiraling towards the vortex core. The turbulent shear stresses do not show discernable reductions in magnitude with lower vortex strength.

More Details

Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer

Physics of Fluids

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the ω-1 dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized ω2 dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the ω-1 region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low. © 2011 American Institute of Physics.

More Details

Improved measurements of large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer

41st AIAA Fluid Dynamics Conference and Exhibit

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Data have been acquired from a spanwise array of fluctuating wall pressure sensors beneath a wind tunnel wall boundary layer at Mach 2, then invoking Taylor's Hypothesis allows the temporal signals to be converted into a spatial map of the wall pressure field. Improvements to the measurement technique were developed to establish the veracity of earlier tentative conclusions. An adaptive filtering scheme using a reference sensor was implemented to cancel effects of wind tunnel acoustic noise and vibration. Coherent structures in the pressure fields were identified using an improved thresholding algorithm that reduced the occurrence of broken contours and spurious signals. Analog filters with sharper frequency cutoffs than digital filters produced signals of greater spectral purity. Coherent structures were confirmed in the fluctuating wall pressure field that resemble similar structures known to exist in the velocity field, in particular by exhibiting a spanwise meander and merging of events. However, the pressure data lacked the common spanwise alternation of positive and negative events found in velocity data, and conversely demonstrated a weak positive correlation in the spanwise direction.

More Details

Very-large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Previous wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer, which essentially are flat at low frequency and do not exhibit the theorized {psi}{sup 2} dependence. The flat portion of the spectrum extends over two orders of magnitude and represents structures reaching at least 100 {delta} in scale, raising questions about their physical origin. The spatial coherence required over these long lengths may arise from very-large-scale structures that have been detected in turbulent boundary layers due to groupings of hairpin vortices. To address this hypothesis, data have been acquired from a dense spanwise array of fluctuating wall pressure sensors, then invoking Taylor's Hypothesis and low-pass filtering the data allows the temporal signals to be converted into a spatial map of the wall pressure field. This reveals streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction and exhibiting spanwise alternation of positive and negative events that meander somewhat in tandem. As the low-pass filter cutoff is lowered, the fluctuating pressure magnitude of the coherent structures diminishes while their length increases.

More Details

Pressure power spectra beneath a supersonic turbulent boundary layer

Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining signals from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the {omega}{sup -1} dependence for fluctuations within the logarithmic region of the boundary layer, but are essentially flat at low frequency and do not exhibit the theorized {omega}{sup 2} dependence. Variations in the Reynolds number or streamwise measurement location collapse to a single curve for each Mach number when normalized by outer flow variables. Normalization by inner flow variables is successful for the {omega}{sup -1} region but less so for lower frequencies. A comparison of the pressure fluctuation intensities with fifty years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes. These trends suggest that much of the historical compressible database may be biased low, leading to the failure of several semi-empirical predictive models to accurately represent the power spectra acquired during the present experiments.

More Details

Interaction of a fin trailing vortex with a downstream control surface

Journal of Spacecraft and Rockets

Beresh, Steven J.; Smith, Justin S.; Henfling, John F.; Grasser, Thomas W.; Spillers, Russell W.

A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.

More Details
Results 76–100 of 126
Results 76–100 of 126