Publications

45 Results

Search results

Jump to search filters

Bergel, G.L., Montes de Zapiain, D., Romero, V., & Romero, V. (2023). Neural network ensembles and uncertainty estimation for predictions of inelastic mechanical deformation using a finite element method-neural network approach. Data-Centric Engineering, 4(4). https://doi.org/10.1017/dce.2023.17

Montes de Zapiain, D., Bergel, G.L., Romero, V., & Romero, V. (2023). Estimating Uncertainty of Neural Network Predictions for Inelastic Mechanical Deformation using Coupled FEM-NN Approach [Conference Presenation]. https://doi.org/10.2172/2430680

Katona, R.M., Maestas, D., Roop, M., Schaller, R.F., Wilson, M.A., Montes de Zapiain, D., Melia, M.A., Noell, P., & Noell, P. (2023). Modeling the Stochastic Nature of Corrosion Reactions in Atmospheric Conditions [Conference Presenation]. https://doi.org/10.2172/2430651

Knudson, M.D., Ao, T., Rodriguez, M.A., Montes de Zapiain, D., Lane, J.M.D., Morgan, D., & Morgan, D. (2023). Transformation mechanisms for the pressure-induced phase transition in single crystal CdS [Conference Presenation]. https://doi.org/10.2172/2430963

Montes de Zapiain, D., Aragon, N.K., Lim, H., Carroll, J.D., Casias, Z., Fensin, S., Battaile, C., Lane, J.M.D., & Lane, J.M.D. (2023). Establishing a data-driven strength model for 𝜷-tin by performing symbolic regression using genetic programming [Conference Presenation]. https://doi.org/10.2172/2430874

Ao, T., Morgan, D.V., Lane, J.M.D., Brown, N.P., Donohoe, B., Knudson, M.D., Martinez, C., Montes de Zapiain, D., Rodriguez, M.A., Valdez, N.R., & Valdez, N.R. (2023). Dynamic x-ray diffraction of materials under ramp compression on the Thor pulsed-power generator [Conference Presenation]. https://doi.org/10.2172/2431265

Montes de Zapiain, D., Lim, H., Park, T., Pourboghrat, F., & Pourboghrat, F. (2023). Data-driven plastic anisotropy predictions using crystal plasticity and deep learning models [Conference Presenation]. https://doi.org/10.2172/2431603

Maestas, D., Wilson, M.A., Montes de Zapiain, D., Melia, M.A., Schaller, R.F., & Schaller, R.F. (2023). Understanding and Modeling the Stochastic Nature of Corrosion Reactions in Atmospheric Conditions [Conference Presenation]. https://doi.org/10.2172/2431444

Lim, H., Montes de Zapiain, D., Park, T., Pourboghrat, F., & Pourboghrat, F. (2023). Data-driven plastic anisotropy predictions using crystal plasticity and deep learning models [Conference Presenation]. https://doi.org/10.2172/2431726

Bachman, W.B., Robbe, P., Montes de Zapiain, D., Wildey, T., Lim, H., & Lim, H. (2023). The multifaceted nature of uncertainty in structure-property linkage with crystal plasticity finite element model [Conference Presenation]. https://doi.org/10.2172/2431686

Montes de Zapiain, D., Bachman, W.B., Lim, H., & Lim, H. (2023). Development of structure-property linkages for damage in crystalline microstructures using Bayesian inference and unsupervised learning [Conference Presenation]. https://doi.org/10.2172/2431659

Bachman, W.B., Robbe, P., Wildey, T., Montes de Zapiain, D., Lim, H., & Lim, H. (2022). The multifaceted uncertainty nature of structure-property linkage with crystal plasticity finite element model [Conference Paper]. https://doi.org/10.2514/6.2023-0525

Ao, T., Donohoe, B., Martinez, C., Knudson, M.D., Montes de Zapiain, D., Morgan, D., Rodriguez, M.A., Lane, J.M.D., & Lane, J.M.D. (2022). LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. https://doi.org/10.2172/1891594

Montes de Zapiain, D., Bergel, G., Lim, H., Romero, V., & Romero, V. (2022). Estimating Uncertainty of Neural Network Predictions for Inelastic Mechanical Deformation using Coupled FEM-NN Approach [Conference Presenation]. https://doi.org/10.2172/2005250

Montes de Zapiain, D., Morgan, D., Thurston, B., Ao, T., Donohue, B., Martinez, C., Rodriguez, M.A., Knudson, M.D., Lane, J.M.D., & Lane, J.M.D. (2022). Simulated X-ray Diffraction and Machine Learning for Interpretation of Dynamic Compression Experiments [Conference Poster]. https://doi.org/10.2172/2003844

Knudson, M.D., Morgan, D.V., Ao, T., Rodriguez, M.A., Montes de Zapiain, D., Lane, J.M.D., & Lane, J.M.D. (2022). Transformation mechanisms for the pressure-induced phase transition in single crystal CdS [Conference Presenation]. https://doi.org/10.2172/2003988

Lim, H., Montes de Zapiain, D., Park, T., Pourboghrat, F., & Pourboghrat, F. (2022). Data-driven plastic anisotropy predictions using crystal plasticity and deep learning models [Conference Presenation]. https://doi.org/10.2172/2003833

Lane, J.M.D., Thurston, B., Ao, T., Montes de Zapiain, D., Rodriguez, M.A., Knudson, M.D., & Knudson, M.D. (2022). Phase Transition Mechanisms in Cadmium Sulfide from X-ray Diffraction Comparisons of High-pressure Experiments and MD Simulation [Conference Presenation]. https://doi.org/10.2172/2002034

Hu, C., Montes de Zapiain, D., Martin, S., Stewart, J.A., Dingreville, R.P.M., & Dingreville, R.P.M. (2022). Accelerating Phase-field Predictions
Via Surrogate Models Trained By
Machine Learning Methods [Conference Presenation]. https://doi.org/10.2172/2001792

Montes de Zapiain, D., Lim, H., Park, T., Pourboghrat, F., & Pourboghrat, F. (2022). Predicting plastic anisotropy using crystal plasticity and Bayesian neural network surrogate models [Conference Presenation]. Materials Science and Engineering: A. https://doi.org/10.2172/2002951

Wood, M.A., Thompson, A.P., Cusentino, M.A., Montes de Zapiain, D., Oleynik, I., & Oleynik, I. (2021). Interatomic Potentials for Materials Science and Beyond; Advances in Machine Learned Spectral Neighborhood Analysis Potentials [Conference Presenation]. https://doi.org/10.2172/1883516

Rodgers, T., Montes de Zapiain, D., Bolintineanu, D.S., Moser, D.R., Pokharel, R., & Pokharel, R. (2021). Microstructure-driven Parameter Calibration for Mesoscale Simulation [Conference Poster]. https://doi.org/10.2172/1847468

Guziewski, M., Montes de Zapiain, D., Dingreville, R.P.M., Coleman, S.P., & Coleman, S.P. (2021). Microscopic and Macroscopic Characterization of Grain Boundary Energy and Strength in Silicon Carbide via Machine-Learning Techniques. ACS Applied Materials and Interfaces, 13(2), pp. 3311-3324. https://doi.org/10.1021/acsami.0c15980

Montes de Zapiain, D., Guziewski, M., Coleman, S.P., Dingreville, R.P.M., & Dingreville, R.P.M. (2020). Characterizing the Tensile Strength of Metastable Grain Boundaries inSilicon Carbide Using Machine Learning [Conference Poster]. https://www.osti.gov/biblio/1821092

Dingreville, R.P.M., Montes de Zapiain, D., Stewart, J.A., & Stewart, J.A. (2020). Accelerating phase-field based predictions via surrogate models trained by machine learning methods [Conference Poster]. https://www.osti.gov/biblio/1812455

Montes de Zapiain, D., Stewart, J.A., Dingreville, R.P.M., & Dingreville, R.P.M. (2019). Accelerated Microstructure Evolution Predictions Using Machine Learning Based Reduced Order Models [Conference Poster]. https://www.osti.gov/biblio/1643393

45 Results
45 Results