Publications

Results 476–500 of 567

Search results

Jump to search filters

Modeling on-sun tests of a prototype solid particle receiver for concentrating solar power processes and storage

Ho, Clifford K.; Khalsa, Siri S.; Siegel, Nathan P.

A model has been developed to simulate the performance of a prototype solid particle receiver that was recently tested at Sandia National Laboratories. The model includes irradiation from the concentrated solar flux, two-band re-radiation and emission with the cavity, discrete-phase particle transport and heat transfer, gas-phase convection, wall conduction, and radiative and convective heat losses. Simulated temperatures of the particles and cavity walls were compared to measured values for nine on-sun tests. Results showed that the simulated temperature distributions and receiver efficiencies matched closely with trends in experimental data as a function of input power and particle mass flow rate. The average relative error between the simulated and measured efficiencies and increases in particle temperature was less than 10%. Simulations of particle velocities and concentrations as a function of position beneath the release point were also evaluated and compared to measured values collected during unheated tests with average relative errors of 6% and 8%, respectively. The calibrated model is being used in parametric analyses to better understand the impact and interactions of multiple parameters with a goal of optimizing the performance and efficiency of the solid particle receiver.

More Details

Joint physical and numerical modeling of water distribution networks

Mckenna, Sean A.; Ho, Clifford K.; Cappelle, Malynda A.; Webb, Stephen W.; O'Hern, Timothy J.

This report summarizes the experimental and modeling effort undertaken to understand solute mixing in a water distribution network conducted during the last year of a 3-year project. The experimental effort involves measurement of extent of mixing within different configurations of pipe networks, measurement of dynamic mixing in a single mixing tank, and measurement of dynamic solute mixing in a combined network-tank configuration. High resolution analysis of turbulence mixing is carried out via high speed photography as well as 3D finite-volume based Large Eddy Simulation turbulence models. Macroscopic mixing rules based on flow momentum balance are also explored, and in some cases, implemented in EPANET. A new version EPANET code was developed to yield better mixing predictions. The impact of a storage tank on pipe mixing in a combined pipe-tank network during diurnal fill-and-drain cycles is assessed. Preliminary comparison between dynamic pilot data and EPANET-BAM is also reported.

More Details

Dual-permeability modeling and evaluation of drift-shadow experiments

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Ho, Clifford K.; Arnold, Bill W.; Altman, Susan J.

The drift-shadow effect describes capillary diversion of water flow around a drift or cavity in porous or fractured rock, resulting in lower water flux directly beneath the cavity. This paper presents computational simulations of drift-shadow experiments using dual-permeability models, similar to the models used for performance assessment analyses of flow and seepage in unsaturated fractured tuff at Yucca Mountain. Results show that the dual-penneability models capture the salient trends and behavior observed in the experiments, but constitutive relations (e.g., fracture capillary-pressure curves) can significantly affect the simulated results. An evaluation of different meshes showed that at the grid refinement used, a comparison between orthogonal and unstructured meshes did not result in large differences.

More Details

Dual-permeability modeling and evaluation of drift-shadow experiments

American Nuclear Society 12th International High Level Radioactive Waste Management Conference 2008

Ho, Clifford K.; Arnold, Bill W.; Altman, Susan J.

The drift-shadow effect describes capillary diversion of water flow around a drift or cavity in porous or fractured rock, resulting in lower water flux directly beneath the cavity. This paper presents computational simulations of drift-shadow experiments using dual-permeability models, similar to the models used for performance assessment analyses of flow and seepage in unsaturated fractured tuff at Yucca Mountain. Results show that the dual-penneability models capture the salient trends and behavior observed in the experiments, but constitutive relations (e.g., fracture capillary-pressure curves) can significantly affect the simulated results. An evaluation of different meshes showed that at the grid refinement used, a comparison between orthogonal and unstructured meshes did not result in large differences.

More Details

Software and codes for analysis of concentrating solar power technologies

Ho, Clifford K.

This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

More Details

Analytical risk-based model of gaseous and liquid-phase radon transport in landfills with radium sources

Environmental Modelling and Software

Ho, Clifford K.

An analytical model of gaseous and liquid-phase radon transport through soils is derived for environmental modeling of landfills containing uranium mill tailings or Ra-226 sources. Processes include radon diffusion in both the gas and liquid phases, advection of soluble radon in percolating water, radioactive decay, equilibrium partitioning between gas and liquid phases, and emanation from different source terms. A probabilistic framework for the radon-transport model is introduced that provides uncertainty and sensitivity analyses for risk-based assessments. Uncertainty analyses are used to compare simulated performance metrics (e.g., radon surface flux) against regulatory standards. Sensitivity analyses are used to identify key parameters and processes that impact the variability of the simulated results. The models and analyses are illustrated with a probabilistic performance assessment of the Mixed Waste Landfill at Sandia National Laboratories in Albuquerque, NM. © 2008 Elsevier Ltd. All rights reserved.

More Details

Finite element analyses of continuous filament ties for masonry applications : final report for the Arquin Corporation

Ho, Clifford K.

Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph winds (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).

More Details

Analysis of micromixers to reduce biofouling on reverse-osmosis membranes

Environmental Progress

Ho, Clifford K.; Altman, Susan J.; Jones, Howland D.T.; Khalsa, Siri S.; Clem, Paul

Features (micromixers) that promote chaotic mixing were fabricated on reverse-osmosis membrane surfaces and evaluated using computational models and laboratory experiments to determine their effectiveness in reducing biofouling. Computational fluid dynamics models of membrane feed channels were developed using different patterns of micromixers on the membrane surface. The shear-stress distribution along the membrane surface was simulated for steady flows along the different micromixer configurations. In addition, the hypothetical mass transfer of a tracer from the membrane surface was used as a metric to compare the amount of scouring and mixing in configurations with and without micromixers. Epoxy micromixers were printed directly onto membrane surfaces, and different patterns were evaluated experimentally. Fluorescence hyperspectral imaging results showed that regions of simulated high shear stress on the membrane corresponded to regions of lower bacterial growth in the experiments, while regions of simulated low shear stress corresponded to regions of higher bacterial growth. In addition, the presence of the micromixers appeared to reduce the overall biofouling concentration in one series of experiments, but the results were inconclusive in another series of experiments. These results indicate that while the enhancement of mixing and shear stress via micromixers may delay or mitigate the onset of localized membrane fouling from biofilms or other contaminants. the impact of micromixers on the overall performance of reverse-osmosis membranes needs further investigation. © 2008 American Institute of Chemical Engineers.

More Details

Solute Mixing Models for Water-Distribution Pipe Networks

Journal of Hydraulic Engineering

Ho, Clifford K.

The spreading of solutes or contaminants through water-distribution pipe networks is controlled largely by mixing at pipe junctions where varying flow rates and concentrations can enter the junction. Alternative models of solute mixing within these pipe junctions are presented in this paper. Simple complete-mixing models are discussed along with rigorous computational-fluid-dynamics models based on turbulent Navier-Stokes equations. In addition, a new model that describes the bulk-mixing behavior resulting from different flow rates entering and leaving the junction is developed in this paper. Comparisons with experimental data have confirmed that this bulk-mixing model provides a lower bound to the amount of mixing that can occur within a pipe junction, while the complete-mixing model yields an upper bound. In addition, a simple scaling parameter is used to estimate the actual (intermediate) mixing behavior based on the bounding predictions of the complete-mixing and bulk-mixing models. These simple analytical models can be readily implemented into network-scale models to develop predictions and bounding scenarios of solute transport and water quality in water-distribution systems.

More Details
Results 476–500 of 567
Results 476–500 of 567