Low Overhead Security Isolation using Lightweight Kernels and TEEs
SCWS 2021: 2021 SC Workshops Supplementary Proceedings, Held in conjunction with SC 2021: The International Conference for High Performance Computing, Networking, Storage and Analysis
The next generation of supercomputing resources is expected to greatly expand the scope of HPC environments, both in terms of more diverse workloads and user bases, as well as the integration of edge computing infrastructures. This will likely require new mechanisms and approaches at the Operating System level to support these broader classes of workloads along with their different security requirements. We claim that a key mechanism needed for these workloads is the ability to securely compartmentalize the system software executing on a given node. In this paper, we present initial efforts in exploring the integration of secure and trusted computing capabilities into an HPC system software stack. As part of this work we have ported the Kitten Lightweight Kernel (LWK) to the ARM64 architecture and integrated it with the Hafnium hypervisor, a reference implementation of a secure partition manager (SPM) that provides security isolation for virtual machines. By integrating Kitten with Hafnium, we are able to replace the commodity oriented Linux based resource management infrastructure and reduce the overheads introduced by using a full weight kernel (FWK) as the node-level resource scheduler. While our results are very preliminary, we are able to demonstrate measurable performance improvements on small scale ARM based SOC platforms.