Flux-Probability Distributions for Radiation Transport in Binary Stochastic Media
Nuclear Science and Technology
Abstract not provided.
Nuclear Science and Technology
Abstract not provided.
Nuclear Science and Engineering
We describe a method that enables Monte Carlo calculations to automatically achieve a user-prescribed error of representation for numerical results. Our approach is to iteratively adapt Monte Carlo functional-expansion tallies (FETs). The adaptivity is based on assessing the cellwise 2-norm of error due to both functional-expansion truncation and statistical uncertainty. These error metrics have been detailed by others for one-dimensional distributions. We extend their previous work to threedimensional distributions and demonstrate the use of these error metrics for adaptivity. The method examines Monte Carlo FET results, estimates truncation and uncertainty error, and suggests a minimumrequired expansion order and run time to achieve the desired level of error. Iteration is required for results to converge to the desired error. Our implementation of adaptive FETs is observed to converge to reasonable levels of desired error for the representation of four distributions. In practice, some distributions and desired error levels may require prohibitively large expansion orders and/or Monte Carlo run times.
This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.
Abstract not provided.
Nuclear Technology
Abstract not provided.
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.
Proposed for publication in Nuclear Science and Engineering.
Abstract not provided.
Lecture Notes in Computational Science and Engineering
Abstract not provided.
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Extremely short collision mean free paths and near-singular elastic and inelastic differential cross sections (DCS) make analog Monte Carlo simulation an impractical tool for charged particle transport. The widely used alternative, the condensed history method, while efficient, also suffers from several limitations arising from the use of precomputed smooth distributions for sampling. There is much interest in developing computationally efficient algorithms that implement the correct transport mechanics. Here we present a nonanalog transport-based method that incorporates the correct transport mechanics and is computationally efficient for implementation in single event Monte Carlo codes. Our method systematically preserves important physics and is mathematically rigorous. It builds on higher order Fokker-Planck and Boltzmann Fokker-Planck representations of the scattering and energy-loss process, and we accordingly refer to it as a Generalized Boltzmann Fokker-Planck (GBFP) approach. We postulate the existence of nonanalog single collision scattering and energy-loss distributions (differential cross sections) and impose the constraint that the first few momentum transfer and energy loss moments be identical to corresponding analog values. This is effected through a decomposition or hybridizing scheme wherein the singular forward peaked, small energy-transfer collisions are isolated and de-singularized using different moment-preserving strategies, while the large angle, large energy-transfer collisions are described by the exact (analog) DCS or approximated to a high degree of accuracy. The inclusion of the latter component allows the higher angle and energy-loss moments to be accurately captured. This procedure yields a regularized transport model characterized by longer mean free paths and smoother scattering and energy transfer kernels than analog. In practice, acceptable accuracy is achieved with two rigorously preserved moments, but accuracy can be systematically increased to analog level by preserving successively higher moments with almost no change to the algorithm. Details of specific moment-preserving strategies will be described and results presented for dose in heterogeneous media due to a pencil beam and a line source of monoenergetic electrons. Error and runtimes of our nonanalog formulations will be contrasted against condensed history implementations.
This document describes the modeling of the physics (and eventually features) in the Integrated TIGER Series (ITS) codes [Franke 04] which is largely pulled from various sources in the open literature (especially [Seltzer 88], [Seltzer 91], [Lorence 89], [Halbleib 92]), although those sources often describe the ETRAN Code from which the physics engine of ITS is derived, not necessarily identical. This is meant to be an evolving document, with more coverage and detail as time goes on. As such, entire sections are still incomplete. Presently, this document covers the continuous-energy ITS codes with more completeness on photon transport (though electron transport will not be completely ignored). In particular, this document does not cover the Multigroup code, MCODES (externally applied electromagnetic fields), or high-energy phenomena (photon pair-production). In this version, equations are largely left to the references though they may be pulled in over time.
This test plan describes the testing strategy for the ITS (Integrated-TIGER-Series) suite of codes. The processes and procedures for performing both verification and validation tests are described. ITS Version 5.0 was developed under the NNSA's ASC program and supports Sandia's stockpile stewardship mission.
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Abstract not provided.
Nuclear Science and Engineering
We consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of three-dimensional (3-D) beams of radiation as a function of depth into the slab, by solving systems of one-dimensional (1-D) transport equations. We implement these radial-moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified PN synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged-particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. We demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, we obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.