Publications

2 Results

Search results

Jump to search filters

Phase Transformations Driving Biaxial Stress Reduction During Wake-Up of Ferroelectric Hafnium Zirconium Oxide Thin Films

Advanced Electronic Materials

Jaszewski, Samantha T.

Biaxial stress is identified to play an important role in the polar orthorhombic phase stability in hafnium oxide-based ferroelectric thin films. However, the stress state during various stages of wake-up has not yet been quantified. In this work, the stress evolution with field cycling in hafnium zirconium oxide capacitors is evaluated. The remanent polarization of a 20 nm thick hafnium zirconium oxide thin film increases from 9.80 to 15.0 µC cm−2 following 106 field cycles. This increase in remanent polarization is accompanied by a decrease in relative permittivity that indicates that a phase transformation has occurred. The presence of a phase transformation is supported by nano-Fourier transform infrared spectroscopy measurements and scanning transmission electron microscopy that show an increase in ferroelectric phase content following wake-up. The stress of individual devices field cycled between pristine and 106 cycles is quantified using the sin2(ψ) technique, and the biaxial stress is observed to decrease from 4.3 ± 0.2 to 3.2 ± 0.3 GPa. The decrease in stress is attributed, in part, to a phase transformation from the antipolar Pbca phase to the ferroelectric Pca21 phase. This work provides new insight into the mechanisms controlling and/or accompanying polarization wake-up in hafnium oxide-based ferroelectrics.

More Details

Impact of high-power impulse magnetron sputtering pulse width on the nucleation, crystallization, microstructure, and ferroelectric properties of hafnium oxide thin films

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Jaszewski, Samantha T.; Fields, Shelby S.; Chung, Ching C.; Jones, Jacob L.; Orson, Keithen G.; Reinke, Petra; Ihlefeld, Jon F.

The impact of the high-power impulse magnetron sputtering (HiPIMS) pulse width on the crystallization, microstructure, and ferroelectric properties of undoped HfO2 films is investigated. HfO2 films were sputtered from a hafnium metal target in an Ar/O2 atmosphere, varying the instantaneous power density by changing the HiPIMS pulse width with fixed time-averaged power and pulse frequency. The pulse width is shown to affect the ion-to-neutral ratio in the depositing species with the shortest pulse durations leading to the highest ion fraction. In situ x-ray diffraction measurements during crystallization demonstrate that the HiPIMS pulse width impacts nucleation and phase formation, with an intermediate pulse width of 110 μs stabilizing the ferroelectric phase over the widest temperature range. Although the pulse width impacts the grain size with the lowest pulse width resulting in the largest grain size, the grain size does not strongly correlate with the phase content or ferroelectric behavior in these films. These results suggest that precise control over the energetics of the depositing species may be beneficial for forming the ferroelectric phase in this material.

More Details
2 Results
2 Results