Publications

Results 1–25 of 113
Skip to search filters

Multi-megabar Dynamic Strength Measurements of Ta, Au, Pt, and Ir

Journal of Dynamic Behavior of Materials

Brown, Justin L.; Davis, Jean-Paul D.; Seagle, Christopher T.

Magnetic loading was used to shocklessly compress four different metals to extreme pressures. Velocimetry monitored the behavior of the material as it was loaded to a desired peak state and then decompressed back down to lower pressures. Two distinct analysis methods, including a wave profile analysis and a novel Bayesian calibration approach, were employed to estimate quantitative strength metrics associated with the loading reversal. Specifically, we report for the first time on strength estimates for tantalum, gold, platinum, and iridium under shockless compression at strain rates of ∼ 5 × 10 5/s in the pressure range of ∼ 100–400 GPa. The magnitude of the shear stresses supported by the different metals under these extreme conditions are surprisingly similar, representing a dramatic departure from ambient conditions.

More Details

Equation of State Measurements on Iron Near the Melting Curve at Planetary Core Conditions by Shock and Ramp Compressions

Journal of Geophysical Research: Solid Earth

Grant, S.C.; Ao, Tommy A.; Seagle, Christopher T.; Porwitzky, Andrew J.; Davis, Jean-Paul D.; Cochrane, Kyle C.; Dolan, Daniel H.; Lin, J.F.; Ditmire, T.; Bernstein, A.C.

The outer core of the Earth is composed primarily of liquid iron, and the inner core boundary is governed by the intersection of the melt line and the geotherm. While there are many studies on the thermodynamic equation of state for solid iron, the equation of state of liquid iron is relatively unexplored. We use dynamic compression to diagnose the high-pressure liquid equation of state of iron by utilizing the shock-ramp capability at Sandia National Laboratories’ Z-Machine. This technique enables measurements of material states off the Hugoniot by initially shocking samples and subsequently driving a further, shockless compression. Planetary studies benefit greatly from isentropic, off-Hugoniot experiments since they can cover pressure-temperature (P-T) conditions that are close to adiabatic profiles found in planetary interiors. We used this method to drive iron to P-T conditions similar to those of the Earth’s outer-inner core boundary, along an elevated-temperature isentrope in the liquid from 275 GPa to 400 GPa. We derive the equation of state using a hybrid backward integration – forward Lagrangian technique on particle velocity traces to determine the pressure-density history of the sample. Our results are in excellent agreement with SESAME 92141, a previously published equation of state table. With our data and previous experimental data on liquid iron we provide new information on the iron melting line and derive new parameters for a Vinet-based equation of state. The table and our parameterized equation of state are applied to provide an updated means of modeling the pressure, mass, and density of liquid iron cores in exoplanetary interiors.

More Details
Results 1–25 of 113
Results 1–25 of 113