Publications

1 Result

Search results

Jump to search filters

Internship Final Report on the unsupervised learning sensor fusion (ULSF) approach

Dalman, Benjamin W.

This paper describes a summer internship project undertaken at Sandia National Labs (SNL), both current status and future work. The project was to explore various machine learning approaches for use on turbulent flow data. Specifically, unsupervised classification of turbulent flow data was explored. First, the usage of models in this field is discussed, and several issues in the common usage of the models are identified. Solutions to these issues are then proposed, in the form of a Bayesian filtering approach which probabilistically incorporates multiple sources of data to improve confidence in a result. Several types of sensors are suggested for this method, the incorporation of which range from semi-supervised learning approaches to fully unsupervised. These approaches are then tested on several turbulent flow cases.

More Details
1 Result
1 Result