One-dimensional ablation using a full Newton's method and finite control volume procedure
Collection of Technical Papers - 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings
The development and verification of a one-dimensional constant density material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of equations have been implemented and verified for variable material properties, Q* ablation, and thermochemical ablation problems. Timing studies were performed, and when accuracy is considered the method developed in this study exhibits significant time savings over the property lagging approach. In addition, maximizing the Newton solver's convergence rate by including sensitivities to the surface recession rate reduces the overall computational time when compared to excluding recession rate sensitivites.