Publications Details
Thermomechanical indentation of shape memory polymers
Shape memory polymers (SMPs) are receiving increasing attention because of their ability to store a temporary shape for a prescribed period of time, and then when subjected to an environmental stimulus, recover an original programmed shape. They are attractive candidates for a wide range of applications in microsystems, biomedical devices, deployable aerospace structures, and morphing structures. In this paper we investigate the thermomechanical behavior of shape memory polymers due to instrumented indentation, a loading/deformation scenario that represents complex multiaxial deformation. The SMP sample is indented using a spherical indenter at a temperature T{sub 1} (>T{sub g}). The temperature is then lowered to T{sub 2} (<T{sub g}) while the indenter is kept in place. After removal of the indenter at T{sub 2}, an indentation impression exists. Shape memory is then activated by increasing the temperature to T{sub 1} (>T{sub g}) during free recovery the indentation impression disappears and the surface of the SMP recovers to its original profile. A recently-developed three-dimensional finite deformation constitutive model for the thermomechanical behavior of SMPs is then used with the finite element method to simulate this process. Measurement and simulation results are compared for cases of free and constrained recovery and good agreement is obtained, suggesting the appropriateness of the simulation approach for complex multiaxial loading/deformations that are likely to occur in applications.