Publications Details
Response predictions of reduced models with whole joints
Kuether, Robert J.; Najera-Flores, David A.
Structural dynamic models of mechanical, aerospace, and civil structures often involve connections of multiple subcomponents with rivets, bolts, press fits, or other joining processes. Recent model order reduction advances have been made for jointed structures using appropriately defined whole joint models in combination with linear substructuring techniques. A whole joint model condenses the interface nodes onto a single node with multi-point constraints resulting in drastic increases in computational speeds to predict transient responses. One drawback to this strategy is that the whole joint models are empirical and require calibration with test or high-fidelity model data. A new framework is proposed to calibrate whole joint models by computing global responses from high-fidelity finite element models and utilizing global optimization to determine the optimal joint parameters. The method matches the amplitude dependent damping and natural frequencies predicted for each vibration mode using quasi-static modal analysis.