Publications

Publications / Conference Poster

Quantification of dynamic differences between boundary conditions for environment specification improvement

Harvie, Julie M.; Mayes, R.L.

Qualification of complex systems typically involves testing the components individually in shock and vibration environments before assembling them into the system. When the components are secured to a fixture on the shaker table, the mechanical impedance of the boundary condition is quite different from that of the next level of assembly. Thus the modes of the component under test are not excited in the same way that they are excited in the system using the typical methods for defining input specifications. Here, the boundary condition impedance is investigated and quantified using substructuring techniques. Also, fixture inputs are derived to overcome the impedance differences and excite a component in the same way it is excited in the next level of assembly.