Publications Details
Parallel algorithm for transient solid dynamics simulations using finite elements and smoothed particle hydrodynamics
An efficient, scalable, parallel algorithm for treating contacts in solid mechanics has been applied to interactions between particles in smooth particle hydrodynamics (SPH). The algorithm uses three different decompositions within a single timestep: (1) a static FE-decomposition of mesh elements; (2) a dynamic SPH-decomposition of SPH particles; (3) and a dynamic contact-decomposition of contact nodes and SPH particles. The overhead cost of such a scheme is the cost of moving mesh and particle data between the decompositions. This cost turns out to be small in practice, leading to a highly load-balanced decomposition in which to perform each of the three major computational states within a timestep.