Publications Details

Publications / Journal Article

Modeling heart rate regulation - Part II: Parameter identification and analysis

Fowler, K.R.; Gray, G.A.; Olufsen, M.S.

In part I of this study we introduced a 17-parameter model that can predict heart rate regulation during postural change from sitting to standing. In this subsequent study, we focus on the 17 model parameters needed to adequately represent the observed heart rate response. In part I and in previous work (Olufsen et al. 2006), we estimated the 17 model parameters by minimizing the least squares error between computed and measured values of the heart rate using the Nelder-Mead method (a simplex algorithm). In this study, we compare the Nelder-Mead optimization method to two sampling methods: the implicit filtering method and a genetic algorithm. We show that these off-the-shelf optimization methods can work in conjunction with the heart rate model and provide reasonable parameter estimates with little algorithm tuning. In addition, we make use of the thousands of points sampled by the optimizers in the course of the minimization to perform an overall analysis of the model itself. Our findings show that the resulting least-squares problem has multiple local minima and that the non-linear-least squares error can vary over two orders of magnitude due to the complex interaction between the model parameters, even when provided with reasonable bound constraints. © Springer Science+Business Media, LLC 2007.