Publications Details

Publications / Journal Article

Low-power Gm-C filter employing current-reuse differential difference amplifiers

Mincey, John S.; Briseno-Vidrios, Carlos; Silva-Martinez, Jose; Rodenbeck, Christopher T.

This study deals with the design of low-power, high performance, continuous-time filters. The proposed OTA architecture employs current-reuse differential difference amplifiers in order to produce more power efficient Gm-C filter solutions. To demonstrate this, a 6th order low-pass Butterworth filter was designed in 0.18 m CMOS achieving a 65-MHz -3-dB frequency, an in-band input-referred third-order intercept point of 12.0 dBm, and an input referred noise density of 40 nV/Hz1=2, while only consuming 8.07 mW from a 1.8 V supply and occupying a total chip area of 0.21 mm2 with a power consumption of only 1.19 mW per pole.