Publications Details
Independent communication messages: methodology and applications
Information flowing on communication buses is ordinarily ``non-random`` in the sense that data entities are not equally likely and independent. This is because they have relationships to each other and to physical occurrences to which they may be responding. Random data would convey no information or meaning. From a different viewpoint, there can be applications for creating randomness characteristics, and four of these are described in this paper. Two examples derive from cryptology and the other two from safety. One cryptology application described is the generation of random numbers for use as, for example, keys, hash functions, nonces, and seeds. The other is for inter-message ``padding`` to resist traffic analysis by masking when data are being transmitted and when the channel is conveying no information. One of the safety applications described is the ``unique signal`` approach used in modern nuclear weapon electrical safety. The other is the use of unique signals as non-weapon critical-operation control functions. Both of these safety applications require provisions to help assure randomness characteristics in any inadvertently occurring inputs. In order to satisfy these cryptology and safety needs, communication strategies are described that generate or selectively encourage independent (unrelated) symbols or messages.