Publications Details
Hardware Implementation of a Traveling Wave Protection Device for DC Microgrids
Paruthiyil, Sajay K.; Bidram, Ali; Jimenez Aparicio, Miguel J.; Hernandez Alvidrez, Javier H.; Reno, Matthew J.
This paper elaborates the results of the hardware implementation of a traveling wave (TW) protection device (PD) for DC microgrids. The proposed TWPD is implemented on a commercial digital signal processor (DSP) board. In the developed TWPD, first, the DSP board's Analog to Digital Converter (ADC) is used to sample the input at a 1 MHz sampling rate. The Analog Input card of DSP board measures the pole current at the TWPD location in DC microgrid. Then, a TW detection algorithm is applied on the output of the ADC to detect the fault occurrence instance. Once this instance is detected, multi-resolution analysis (MRA) is performed on a 128-sample data butter that is created around the fault instance. The MRA utilizes discrete wavelet transform (DWT) to extract the high-frequency signatures of measured pole current. To quantity the extracted TW features, the Parseval theorem is used to calculate the Parseval energy of reconstructed wavelet coefficients created by MRA. These Parseval energy values are later used as inputs to a polynomial linear regression tool to estimate the fault location. The performance of the created TWPD is verified using an experimental testbed.