Publications

Results 126–150 of 9,998

Search results

Jump to search filters

Sequential optical response suppression for chemical mixture characterization

Quantum

Magann, Alicia B.; Mccaul, Gerard; Rabitz, Herschel A.; Bondar, Denys I.

The characterization of mixtures of non-interacting, spectroscopically similar quantum components has important applications in chemistry, biology, and materials science. We introduce an approach based on quantum tracking control that allows for determining the relative concentrations of constituents in a quantum mixture, using a single pulse which enhances the distinguishability of components of the mixture and has a length that scales linearly with the number of mixture constituents. To illustrate the method, we consider two very distinct model systems: mixtures of diatomic molecules in the gas phase, as well as solid-state materials composed of a mixture of components. A set of numerical analyses are presented, showing strong performance in both settings.

More Details

FROSch PRECONDITIONERS FOR LAND ICE SIMULATIONS OF GREENLAND AND ANTARCTICA

SIAM Journal on Scientific Computing

Heinlein, Alexander; Perego, Mauro P.; Rajamanickam, Sivasankaran R.

Numerical simulations of Greenland and Antarctic ice sheets involve the solution of large-scale highly nonlinear systems of equations on complex shallow geometries. This work is concerned with the construction of Schwarz preconditioners for the solution of the associated tangent problems, which are challenging for solvers mainly because of the strong anisotropy of the meshes and wildly changing boundary conditions that can lead to poorly constrained problems on large portions of the domain. Here, two-level generalized Dryja-Smith-Widlund (GDSW)-type Schwarz preconditioners are applied to different land ice problems, i.e., a velocity problem, a temperature problem, as well as the coupling of the former two problems. We employ the message passing interface (MPI)- parallel implementation of multilevel Schwarz preconditioners provided by the package FROSch (fast and robust Schwarz) from the Trilinos library. The strength of the proposed preconditioner is that it yields out-of-the-box scalable and robust preconditioners for the single physics problems. To the best of our knowledge, this is the first time two-level Schwarz preconditioners have been applied to the ice sheet problem and a scalable preconditioner has been used for the coupled problem. The preconditioner for the coupled problem differs from previous monolithic GDSW preconditioners in the sense that decoupled extension operators are used to compute the values in the interior of the subdomains. Several approaches for improving the performance, such as reuse strategies and shared memory OpenMP parallelization, are explored as well. In our numerical study we target both uniform meshes of varying resolution for the Antarctic ice sheet as well as nonuniform meshes for the Greenland ice sheet. We present several weak and strong scaling studies confirming the robustness of the approach and the parallel scalability of the FROSch implementation. Among the highlights of the numerical results are a weak scaling study for up to 32 K processor cores (8 K MPI ranks and 4 OpenMP threads) and 566 M degrees of freedom for the velocity problem as well as a strong scaling study for up to 4 K processor cores (and MPI ranks) and 68 M degrees of freedom for the coupled problem.

More Details

In Their Shoes: Persona-Based Approaches to Software Quality Practice Incentivization

Computing in Science and Engineering

Mundt, Miranda R.; Milewicz, Reed M.; Raybourn, Elaine M.

Many teams struggle to adapt and right-size software engineering best practices for quality assurance to fit their context. Introducing software quality is not usually framed in a way that motivates teams to take action, thus resulting in it becoming a "check the box for compliance"activity instead of a cultural practice that values software quality and the effort to achieve it. When and how can we provide effective incentives for software teams to adopt and integrate meaningful and enduring software quality practices? We explored this question through a persona-based ideation exercise at the 2021 Collegeville Workshop on Scientific Software in which we created three unique personas that represent different scientific software developer perspectives.

More Details

Processing Particle Data Flows with SmartNICs

2022 IEEE High Performance Extreme Computing Conference, HPEC 2022

Liu, Jianshen L.; Maltzahn, Carlos; Curry, Matthew L.; Ulmer, Craig D.

Many distributed applications implement complex data flows and need a flexible mechanism for routing data between producers and consumers. Recent advances in programmable network interface cards, or SmartNICs, represent an opportunity to offload data-flow tasks into the network fabric, thereby freeing the hosts to perform other work. System architects in this space face multiple questions about the best way to leverage SmartNICs as processing elements in data flows. In this paper, we advocate the use of Apache Arrow as a foundation for implementing data-flow tasks on SmartNICs. We report on our experiences adapting a partitioning algorithm for particle data to Apache Arrow and measure the on-card processing performance for the BlueField-2 SmartNIC. Our experiments confirm that the BlueField-2's (de)compression hardware can have a significant impact on in-transit workflows where data must be unpacked, processed, and repacked.

More Details

Mesostructure Evolution During Powder Compression: Micro-CT Experiments and Particle-Based Simulations

Conference Proceedings of the Society for Experimental Mechanics Series

Cooper, Marcia A.; Clemmer, Joel T.; Silling, Stewart A.; Bufford, Daniel C.; Bolintineanu, Dan S.

Powders under compression form mesostructures of particle agglomerations in response to both inter- and intra-particle forces. The ability to computationally predict the resulting mesostructures with reasonable accuracy requires models that capture the distributions associated with particle size and shape, contact forces, and mechanical response during deformation and fracture. The following report presents experimental data obtained for the purpose of validating emerging mesostructures simulated by discrete element method and peridynamic approaches. A custom compression apparatus, suitable for integration with our micro-computed tomography (micro-CT) system, was used to collect 3-D scans of a bulk powder at discrete steps of increasing compression. Details of the apparatus and the microcrystalline cellulose particles, with a nearly spherical shape and mean particle size, are presented. Comparative simulations were performed with an initial arrangement of particles and particle shapes directly extracted from the validation experiment. The experimental volumetric reconstruction was segmented to extract the relative positions and shapes of individual particles in the ensemble, including internal voids in the case of the microcrystalline cellulose particles. These computationally determined particles were then compressed within the computational domain and the evolving mesostructures compared directly to those in the validation experiment. The ability of the computational models to simulate the experimental mesostructures and particle behavior at increasing compression is discussed.

More Details

Characterizing Midcircuit Measurements on a Superconducting Qubit Using Gate Set Tomography

Physical Review Applied

Rudinger, Kenneth M.; Ribeill, Guilhem J.; Govia, Luke C.G.; Ware, Matthew; Nielsen, Erik N.; Young, Kevin C.; Ohki, Thomas A.; Blume-Kohout, Robin J.; Proctor, Timothy J.

Measurements that occur within the internal layers of a quantum circuit—midcircuit measurements—are a useful quantum-computing primitive, most notably for quantum error correction. Midcircuit measurements have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements that terminate quantum circuits. Here we show how to characterize midcircuit measurements, modeled by quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST). We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we explore the impact of residual cavity photon population on measurement error. QILGST can resolve different error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000ns we measure a total error rate (i.e., half diamond distance) of ϵ⋄=8.1±1.4%, a readout fidelity of 97.0±0.3%, and output quantum-state fidelities of 96.7±0.6% and 93.7±0.7% when measuring 0 and 1, respectively.

More Details

Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: a case study in heterogeneous catalysis

Combustion Theory and Modelling

Diaz-Ibarra, Oscar H.; Kim, Kyungjoo K.; Safta, Cosmin S.; Zador, Judit Z.; Najm, H.N.

We have extended the computational singular perturbation (CSP) method to differential algebraic equation (DAE) systems and demonstrated its application in a heterogeneous-catalysis problem. The extended method obtains the CSP basis vectors for DAEs from a reduced Jacobian matrix that takes the algebraic constraints into account. We use a canonical problem in heterogeneous catalysis, the transient continuous stirred tank reactor (T-CSTR), for illustration. The T-CSTR problem is modelled fundamentally as an ordinary differential equation (ODE) system, but it can be transformed to a DAE system if one approximates typically fast surface processes using algebraic constraints for the surface species. We demonstrate the application of CSP analysis for both ODE and DAE constructions of a T-CSTR problem, illustrating the dynamical response of the system in each case. We also highlight the utility of the analysis in commenting on the quality of any particular DAE approximation built using the quasi-steady state approximation (QSSA), relative to the ODE reference case.

More Details

Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning

Journal of Machine Learning Research

Safta, Cosmin S.; Jakeman, John D.; Gorodetsky, Alex A.

This paper describes an efficient reverse-mode differentiation algorithm for contraction operations for arbitrary and unconventional tensor network topologies. The approach leverages the tensor contraction tree of Evenbly and Pfeifer (2014), which provides an instruction set for the contraction sequence of a network. We show that this tree can be efficiently leveraged for differentiation of a full tensor network contraction using a recursive scheme that exploits (1) the bilinear property of contraction and (2) the property that trees have a single path from root to leaves. While differentiation of tensor-tensor contraction is already possible in most automatic differentiation packages, we show that exploiting these two additional properties in the specific context of contraction sequences can improve eficiency. Following a description of the algorithm and computational complexity analysis, we investigate its utility for gradient-based supervised learning for low-rank function recovery and for fitting real-world unstructured datasets. We demonstrate improved performance over alternating least-squares optimization approaches and the capability to handle heterogeneous and arbitrary tensor network formats. When compared to alternating minimization algorithms, we find that the gradient-based approach requires a smaller oversampling ratio (number of samples compared to number model parameters) for recovery. This increased efficiency extends to fitting unstructured data of varying dimensionality and when employing a variety of tensor network formats. Here, we show improved learning using the hierarchical Tucker method over the tensor-train in high-dimensional settings on a number of benchmark problems.

More Details

Characterizing Memory Failures Using Benford’s Law

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Ferreira, Kurt B.; Levy, Scott L.

Fault tolerance is a key challenge as high performance computing systems continue to increase component counts, individual component reliability decreases, and hardware and software complexity increases. To better understand the potential impacts of failures on next-generation systems, significant effort has been devoted to collecting, characterizing and analyzing failures on current systems. These studies require large volumes of data and complex analysis in an attempt to identify statistical properties of the failure data. In this paper, we examine the lifetime of failures on the Cielo supercomputer that was located at Los Alamos National Laboratory, looking specifically at the time between faults on this system. Through this analysis, we show that the time between uncorrectable faults for this system obeys Benford’s law, This law applies to a number of naturally occurring collections of numbers and states that the leading digit is more likely to be small, for example a leading digit of 1 is more likely than 9. We also show that a number of common distributions used to model failures also follow this law. This work provides critical analysis on the distribution of times between failures for extreme-scale systems. Specifically, the analysis in this work could be used as a simple form of failure prediction or used for modeling realistic failures.

More Details

Leveraging Production Visualization Tools In Situ

Mathematics and Visualization

Moreland, Kenneth D.; Bauer, Andrew C.; Geveci, Berk; O'Leary, Patrick; Whitlock, Brad

The visualization community has invested decades of research and development into producing large-scale production visualization tools. Although in situ is a paradigm shift for large-scale visualization, much of the same algorithms and operations apply regardless of whether the visualization is run post hoc or in situ. Thus, there is a great benefit to taking the large-scale code originally designed for post hoc use and leveraging it for use in situ. This chapter describes two in situ libraries, Libsim and Catalyst, that are based on mature visualization tools, VisIt and ParaView, respectively. Because they are based on fully-featured visualization packages, they each provide a wealth of features. For each of these systems we outline how the simulation and visualization software are coupled, what the runtime behavior and communication between these components are, and how the underlying implementation works. We also provide use cases demonstrating the systems in action. Both of these in situ libraries, as well as the underlying products they are based on, are made freely available as open-source products. The overviews in this chapter provide a toehold to the practical application of in situ visualization.

More Details

Measuring the capabilities of quantum computers

Nature Physics

Proctor, Timothy J.; Rudinger, Kenneth M.; Young, Kevin C.; Nielsen, Erik N.; Blume-Kohout, Robin J.

Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure.

More Details

Assessing the predictive impact of factor fixing with an adaptive uncertainty-based approach

Environmental Modelling and Software

Wang, Qian; Guillaume, Joseph; Jakeman, John D.; Yang, Tao; Iwanaga, Takuya; Croke, Barry; Jakeman, Tony

Despite widespread use of factor fixing in environmental modeling, its effect on model predictions has received little attention and is instead commonly presumed to be negligible. We propose a proof-of-concept adaptive method for systematically investigating the impact of factor fixing. The method uses Global Sensitivity Analysis methods to identify groups of sensitive parameters, then quantifies which groups can be safely fixed at nominal values without exceeding a maximum acceptable error, demonstrated using the 21-dimensional Sobol’ G-function. Furthermore, three error measures are considered for quantities of interest, namely Relative Mean Absolute Error, Pearson Product-Moment Correlation and Relative Variance. Results demonstrate that factor fixing may cause large errors in the model results unexpectedly, when preliminary analysis suggests otherwise, and that the default value selected affects the number of factors to fix. To improve the applicability and methodological development of factor fixing, a new research agenda encompassing five opportunities is discussed for further attention.

More Details

Developing Uncertainty Quantification Strategies in Electromagnetic Problems Involving Highly Resonant Cavities

Journal of Verification, Validation and Uncertainty Quantification

Campione, Salvatore; Stephens, John A.; Martin, Nevin; Eckert, Aubrey C.; Warne, Larry K.; Huerta, Jose G.; Pfeiffer, Robert A.; Jones, Adam J.

High-quality factor resonant cavities are challenging structures to model in electromagnetics owing to their large sensitivity to minute parameter changes. Therefore, uncertainty quantification (UQ) strategies are pivotal to understanding key parameters affecting the cavity response. We discuss here some of these strategies focusing on shielding effectiveness (SE) properties of a canonical slotted cylindrical cavity that will be used to develop credibility evidence in support of predictions made using computational simulations for this application.

More Details

Evaluating MPI resource usage summary statistics

Parallel Computing

Ferreira, Kurt B.; Levy, Scott L.

The Message Passing Interface (MPI) remains the dominant programming model for scientific applications running on today's high-performance computing (HPC) systems. This dominance stems from MPI's powerful semantics for inter-process communication that has enabled scientists to write applications for simulating important physical phenomena. MPI does not, however, specify how messages and synchronization should be carried out. Those details are typically dependent on low-level architecture details and the message characteristics of the application. Therefore, analyzing an application's MPI resource usage is critical to tuning MPI's performance on a particular platform. The result of this analysis is typically a discussion of the mean message sizes, queue search lengths and message arrival times for a workload or set of workloads. While a discussion of the arithmetic mean in MPI resource usage might be the most intuitive summary statistic, it is not always the most accurate in terms of representing the underlying data. In this paper, we analyze MPI resource usage for a number of key MPI workloads using an existing MPI trace collector and discrete-event simulator. Our analysis demonstrates that the average, while easy and efficient to calculate, is a useful metric for characterizing latency and bandwidth measurements, but may not be a good representation of application message sizes, match list search depths, or MPI inter-operation times. Additionally, we show that the median and mode are superior choices in many cases. We also observe that the arithmetic mean is not the best representation of central tendency for data that are drawn from distributions that are multi-modal or have heavy tails. The results and analysis of our work provide valuable guidance on how we, as a community, should discuss and analyze MPI resource usage data for scientific applications.

More Details

NMSBA Sustainable Engineering (Final Report)

Nicholson, Bethany L.; Siirola, John D.

This report summarizes the guidance provided to Sustainable Engineering to help them learn about equation-oriented optimization and the Sandia-developed software packages Pyomo and IDAESPSE. This was a short 10-week project (October 2021 – December 2021) and the goal was to help the company learn about the IDAES framework and how it could be used for their future projects. The company submitted an SBIR proposal related to developing a green ammonia process model with IDAES and if that proposal is successful this NMSBA project could lead to future collaboration opportunities.

More Details

Discrete modeling of a transformer with ALEGRA

Rodriguez, Angel E.; Niederhaus, John H.; Greenwood, Wesley J.; Clutz, Christopher J.R.

We report progress on a task to model transformers in ALEGRA using the “Transient Magnetics” option. We specifically evaluate limits of the approach resolving individual coil wires. There are practical limits to the number of turns in a coil that can be numerically modeled, but calculated inductance can be scaled to the correct number of turns in a simple way. Our testing essentially confirmed this “turns scaling” hypothesis. We developed a conceptual transformer design, representative of practical designs of interest, and that focused our analysis. That design includes three coils wrapped around a rectangular ferromagnetic core. The secondary and tertiary coils have multiple layers. The tertiary has three layers of 13 turns each; the secondary has five layers of 44 turns; the primary has one layer of 20 turns. We validated the turns scaling of inductance for simple (one-layer) coils in air (no core) by comparison to available independent calculations for simple rectangular coils. These comparisons quantified the errors versus reduced number of turns modeled. For more than 3 turns, the errors are <5%. The magnetic field solver failed to converge (within 5000 iterations) for >10 turns. Including the core introduced some complications. It was necessary to capture the core surfaces in thin grid sheaths to minimize errors in computed magnetic energy. We do not yet have quantitative benchmarks with which to compare, but calculated results are qualitatively reasonable.

More Details
Results 126–150 of 9,998
Results 126–150 of 9,998