Publications / SAND Report

Discrete modeling of a transformer with ALEGRA

Rodriguez, Angel E.; Niederhaus, John H.; Greenwood, Wesley J.; Clutz, Christopher J.R.

We report progress on a task to model transformers in ALEGRA using the “Transient Magnetics” option. We specifically evaluate limits of the approach resolving individual coil wires. There are practical limits to the number of turns in a coil that can be numerically modeled, but calculated inductance can be scaled to the correct number of turns in a simple way. Our testing essentially confirmed this “turns scaling” hypothesis. We developed a conceptual transformer design, representative of practical designs of interest, and that focused our analysis. That design includes three coils wrapped around a rectangular ferromagnetic core. The secondary and tertiary coils have multiple layers. The tertiary has three layers of 13 turns each; the secondary has five layers of 44 turns; the primary has one layer of 20 turns. We validated the turns scaling of inductance for simple (one-layer) coils in air (no core) by comparison to available independent calculations for simple rectangular coils. These comparisons quantified the errors versus reduced number of turns modeled. For more than 3 turns, the errors are <5%. The magnetic field solver failed to converge (within 5000 iterations) for >10 turns. Including the core introduced some complications. It was necessary to capture the core surfaces in thin grid sheaths to minimize errors in computed magnetic energy. We do not yet have quantitative benchmarks with which to compare, but calculated results are qualitatively reasonable.