Multifidelity Uncertainty Quantification of Wind Turbine Interaction Using Enhanced Nalu-Wind Actuator Simulations
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In support of analyst requests for Mobile Guardian Transport studies, researchers at Sandia National Laboratories have expanded data types for the Slycat ensemble-analysis and visualization tool to include 3D surface meshes. This new capability represents a significant advance in our ability to perform detailed comparative analysis of simulation results. Analyzing mesh data rather than images provides greater flexibility for post-processing exploratory analysis.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal for Uncertainty Quantification
This paper presents a multifidelity uncertainty quantification framework called MFNets. We seek to address three existing challenges that arise when experimental and simulation data from different sources are used to enhance statistical estimation and prediction with quantified uncertainty. Specifically, we demonstrate that MFNets can (1) fuse heterogeneous data sources arising from simulations with different parameterizations, e.g simulation models with different uncertain parameters or data sets collected under different environmental conditions; (2) encode known relationships among data sources to reduce data requirements; and (3) improve the robustness of existing multi-fidelity approaches to corrupted data. MFNets construct a network of latent variables (LVs) to facilitate the fusion of data from an ensemble of sources of varying credibility and cost. These LVs are posited as explanatory variables that provide the source of correlation in the observed data. Furthermore, MFNets provide a way to encode prior physical knowledge to enable efficient estimation of statistics and/or construction of surrogates via conditional independence relations on the LVs. We highlight the utility of our framework with a number of theoretical results which assess the quality of the posterior mean as a frequentist estimator and compare it to standard sampling approaches that use single fidelity, multilevel, and control variate Monte Carlo estimators. We also use the proposed framework to derive the Monte Carlo-based control variate estimator entirely from the use of Bayes rule and linear-Gaussian models -- to our knowledge the first such derivation. Finally, we demonstrate the ability to work with different uncertain parameters across different models.
Additive Manufacturing
Additive Manufacturing (AM), commonly referred to as 3D printing, offers the ability to not only fabricate geometrically complex lattice structures but parts in which lattice topologies in-fill volumes bounded by complex surface geometries. However, current AM processes produce defects on the strut and node elements which make up the lattice structure. This creates an inherent difference between the as-designed and as-fabricated geometries, which negatively affects predictions (via numerical simulation) of the lattice's mechanical performance. Although experimental and numerical analysis of an AM lattice's bulk structure, unit cell and struts have been performed, there exists almost no research data on the mechanical response of the individual as-manufactured lattice node elements. This research proposes a methodology that, for the first time, allows non-destructive quantification of the mechanical response of node elements within an as-manufactured lattice structure. A custom-developed tool is used to extract and classify each individual node geometry from micro-computed tomography scans of an AM fabricated lattice. Voxel-based finite element meshes are generated for numerical simulation and the mechanical response distribution is compared to that of the idealised computer-aided design model. The method demonstrates compatibility with Uncertainty Quantification methods that provide opportunities for efficient prediction of a population of nodal responses from sampled data. Overall, the non-destructive and automated nature of the node extraction and response evaluation is promising for its application in qualification and certification of additively manufactured lattice structures.
Nature Communications
If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.