A Case Study in Using Containers to Build and Distribute HPC Applications: ALEGRA
Abstract not provided.
Abstract not provided.
Abstract not provided.
2019 15th Hypervelocity Impact Symposium, HVIS 2019
In this work we evaluated the effects that equations of state and strength models have on SCJ development using the Sandia National Laboratories multiphysics shock code, ALEGRA. Results were quantified using a Lagrangian tracer particle following liner collapse, passing through the compression zone, and flowing into the jet tip. We found consistent results among several EOS: 3320, 3331, and 3337. The 3325 EOS generated a measurable low density and hollow region near the jet tip which appears to be reflected in a lower internal energy of the jet. At this time, we cannot tell, experimentally, if such a hollow region exists. The 3337 EOS is recent, well documented [6], and produces results similar to 3320 [3]. The various strength models produced more noticeable differences. In terms of internal energy and temperature, SGL had the largest values followed by PTW, ZA, and finally JC and MTS, which were quite similar to each other. We looked at melt conditions in the SGL and JC models using the 3337 EOS. The SGL model reported a liquid region along the jet axis all the way to the tip-seemingly consistent with experiment-while the JC model does not indicate any phase transition. None of the other yield models indicated melt along the jet axis. For all EOS and strength models, we found similar results for the velocity history of the jet tip as measured against experiment using photon Dopper velocimetry.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The failure of subsurface seals (i.e., wellbores, shaft and drift seals in a deep geologic nuclear waste repository) has important implications for US Energy Security. The performance of these cementitious seals is controlled by a combination of chemical and mechanical forces, which are coupled processes that occur over multiple length scales. The goal of this work is to improve fundamental understanding of cement-geomaterial interfaces and develop tools and methodologies to characterize and predict performance of subsurface seals. This project utilized a combined experimental and modeling approach to better understand failure at cement-geomaterial interfaces. Cutting-edge experimental methods and characterization methods were used to understand evolution of the material properties during chemo-mechanical alteration of cement-geomaterial interfaces. Software tools were developed to model chemo-mechanical coupling and predict the complex interplay between reactive transport and solid mechanics. Novel, fit-for-purpose materials were developed and tested using fundamental understanding of failure processes at cement- geomaterial interfaces. ACKNOWLEDGEMENTS The authors wish to acknowledge the Earth Sciences Research Foundation for their generous support over the last three years. In particular, we thank Erik Webb for his numerous suggestions, comments, feedback, and encouragement over the course of the project. There many who helped bring this project to fruition, including: Dave Borns, Steve Bauer, Pania Newell, Heeho Park, and Doug Blankenship. There are many support personnel who we thank for their valuable contributions to the logistics and business of management side of the project, including: Tracy Woolever, Libby Sanzero, and Nancy Vermillion.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.