Publications

Results 95526–95550 of 96,771

Search results

Jump to search filters

The PNC/SNL SERAPH advanced test reactor feasibility study

Harms, Gary A.

This study examined the feasibility of the Safety Engineering Reactor for Accident Phenomenology (SERAPH), a research reactor with the capability to perform a wide array of safety experiments important in the design of commercial nuclear reactors. The study proceeded in two phases. In Phase 1, the experimental needs were examined and a wide-ranging survey of many fuel/coolant options for the SERAPH driver reactor was done. In Phase 2, the most promising candidates identified in Phase 1 were studied in more detail. A reactor with heavy-water coolant, BeO-PuO{sub 2} fuel matrix, and a standard pin geometry was found to have the required experiment capabilities while using relatively current technology. A reactor with helium coolant, BeO-PuO{sub 2} fuel matrix, and a unique geometrical configuration was found to have significantly higher capabilities but with greater technical risk. 5 refs., 34 figs., 36 tabs.

More Details

Submergence and high temperture steam testing of class 1E electrical cables

Jacobus, M.J.

This report describes the results of high temperature steam testing and submergence testing of 12 different cable products that are representative of typical cables used inside containments of US light water reactors. Both tests were performed after the cables were exposed to simultaneous thermal and radiation aging, followed by exposure to loss-of-coolant accident simulations. The results of the high temperature steam test indicate the approximate thermal failure thresholds for each cable type. The results of submergence test indicate that a number of cable types can withstand submergence at elevated temperature, even after exposure to a loss-of-coolant accident simulation. 4 refs., 6 figs., 9 tabs.

More Details

A comparison of parameter estimation and sensitivity analysis techniques and their impact on the uncertainty in ground water flow model predictions

Zimmerman, D.A.; Hanson, R.T.; Davis, P.A.

This work documents a comparison of sensitivity and uncertainty analysis techniques that are likely to be used in support of repository performance assessments to determine compliance with the Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA) regulations for high-level radioactive waste (HLW) repositories. A variety of parameter estimation and sensitivity analysis techniques were applied to a model of the Avra Valley aquifer, Arizona. Two approaches to sensitivity analyses were used, statistical and deterministic; these were applied to evaluate the sensitivity of the ground water travel time to changes in transmissivity. The effect of different boundary conditions on the calculated sensitivity derivatives was also evaluated. Parameter estimates and estimation errors were obtained via geostatistical and inverse techniques. The throughput'' of the kriging techniques suggests that the mean estimates derived from these techniques are frequently off the mark'' or inconsistent with the conceptual model. With no screening of the input parameter estimates for realism, non- conservative travel time estimates were obtained. The differential analysis sensitivity technique is shown to be dependent on the choice of design point, providing only a local measure of the sensitivity. The statistical approach to sensitivity identifies parameters which are both sensitive and uncertain, i.e., it shows when the uncertainty in a model parameter is important. Sensitivity estimates are also shown to be dependent on the choice of boundary conditions used. 92 refs., 55 figs., 13 tabs.

More Details

Compilation and representation of intelligent electronic documents: An architecture for referenceability

Hall, R.C.

This report describes an architecture for compiling and representing electronic documents in a framework which accommodates knowledge about how the documents are composed, organized, and correlated. A general concept of referenceability is employed. While the concept is relevant to a wide range of application areas, it is described in familiar terms of an electronic document comprised of related textual information and graphics. The concept is applicable to all classes of objects which, together with their references, constitute the electronic document. The documents may themselves contain references to other documents, as well as to constituent object classes such as textual components, figures, footnotes, subject indexes, and the like. The objects and references can be dynamically combined according to a total logical structure representable within a window environment. The framework supports automatic resolution of references and display of related document objects through intercommunicating windows which constitute a relevant user view of a document. 6 refs., 9 figs.

More Details

NEFTRAN-S: A network flow and contaminant transport model for statistical and deterministic simulations using personal computers

Leigh, Christi D.

This document describes the NEFTRAN-S computer code and is intended to provide the reader with enough information to use the code. NEFTRAN-S was developed for the United States Environmental Protection Agency for the assessment of ground-water flow and radionuclide transport from radioactive waste disposal in geologic formations. NEFTRAN-S is a successor to the NEFTRAN code. The code was developed in conjunction with NEFTRAN-2, which was developed recently for the United States Nuclear Regulatory Commission. As a result, some of the features contained in NEFTRAN-2 have been included in NEFTRAN-S. In particular, NEFTRAN-S includes an exponential-leach-rate source, decoupled time steps for source and transport, and an option for inputting pore-water velocities. Features unique to NEFTRAN-S include a user-friendly format for use on personal computers and coupling with statistical sampling and analysis using the SUNS software shell. This document was written to provide a comprehensive discussion of the NEFTRAN-S code including its history, the theory, its use and examples of possible applications. Minimal reference to previous documents is intended. 25 refs., 132 figs., 30 tabs.

More Details

UFO (UnFold Operator) default data format

Kissel, L.

The default format for the storage of x,y data for use with the UFO code is described. The format assumes that the data stored in a file is a matrix of values; two columns of this matrix are selected to define a function of the form y = f(x). This format is specifically designed to allow for easy importation of data obtained from other sources, or easy entry of data using a text editor, with a minimum of reformatting. This format is flexible and extensible through the use of inline directives stored in the optional header of the file. A special extension of the format implements encoded data which significantly reduces the storage required as compared wth the unencoded form. UFO supports several extensions to the file specification that implement execute-time operations, such as, transformation of the x and/or y values, selection of specific columns of the matrix for association with the x and y values, input of data directly from other formats (e.g., DAMP and PFF), and a simple type of library-structured file format. Several examples of the use of the format are given.

More Details

An investigation of the effects of thermal aging on the fire damageability of electric cables

Nowlen, Steven P.

This report documents the findings of an experimental investigation of the effects of thermal aging on the fire damageability of electric cables. Two popular types of nuclear qualified cables were evaluated. For each cable type, both unaged (i.e., new off the reel) and thermally aged samples were exposed to steady-state elevated temperature environments until conductor-to-conductor electrical shorting was observed. Plots of the time to electrical failure versus the exposure temperature were developed and thermal damage thresholds were determined. For one cable type, the thermally aged cables were less vulnerable to thermal damage than were the unaged samples as demonstrated by an increase in the thermal damage threshold for the aged samples, and an extended survival time at exposure temperatures above the damage threshold for aged samples compared to unaged samples. For the second cable, the threshold of thermal damage was lowered somewhat by the aging process, an indication of an increased vulnerability to thermal damage due to aging. However, for the higher temperature exposures, no statistical difference between the damage times for aged and unaged cable samples was noted. For both cable types, the changes in the thermal damage threshold observed were not considered significant in terms of fire risk. 4 refs., 9 figs., 8 tabs.

More Details

Borehole Radar Evaluation Program: Antenna designs for optimal directionality

Castle, J.G.; Morris, H.E.

The thrust of this progress report deals with the significant advances we have made in the past few months toward optimal radiating efficiency and optimal directionality from antenna arrays that fit inside a 5.5 in.-OD tool. The reasons spawning this development effort on antennas are the many uses for underground radar systems that can be built around such high-performance antennas. Targets of interest include large man-made voids, natural voids in strata, fractures zones in hard rock, edges and internal faults in salts domes and glaciers, etc. Recent progress includes observation of the radiation patterns of several dipole arrays which we designed to fit within a 5.5-inch OD borehole tool and to radiate efficiently at wavelengths in the band from 0.4 meter to 2 meters with optimal directionality. Front-to-back ratios of 15 dB are consistently observed in the horizontal plane of these arrays. These antennas are observed to radiate with high efficiencies, less than 1 dB loss, into air at 1.3 meter wavelength. 18 figs.

More Details

ZEPHYR3D: A finite difference computer program for three-dimensional, transient incompressible flow problems

Schutt, James A.

This report describes the finite difference computer code ZEPHYR3D, which is designed to solve three-dimensional, transient incompressible flow problems. ZEPHYR3D includes an energy equation that allows coupled thermal/fluid problems to be solved with the limits of the Boussinesq approximation. It also includes an implementation of the Smagorinsky subgrid scale turbulence model, which allows ZEPHYR3D to perform large eddy simulation of turbulent flows. This report includes the mathematical and numerical basis for ZEPHYR3D, a user's guide, and several example/benchmark problems. These problems include flow over a backward-facing step, free convection in an enclosure, and the collapse of a mixed region in a stratified environment. 22 refs., 32 figs., 2 tabs.

More Details

Proceedings of the first switch tube advanced technology meeting held at EG G, Salem, Massachusetts, May 23, 1990

Beavis, L.C.

Early in 1990, J. A. Wilder, Supervisor of Sandia National Laboratories (SNLA), Division 2565 requested that a meeting of the scientists and engineers responsible for developing and producing switch tubes be set up to discuss in a semi-formal way the science and technology of switch tubes. Programmatic and administrative issues were specifically exempted from the discussions. L. Beavis, Division 7471, SNL and A. Shuman, EG G, Salem were made responsible for organizing a program including the materials and processes of switch tubes. The purpose of the Switch Tube Advanced Technology meeting was to allow personnel from Allied Signal Kansas City Division (AS/KCD); EG G, Salem and Sandia National Laboratories (SNL) to discuss a variety of issues involved in the development and production of switch tubes. It was intended that the formal and informal discussions would allow a better understanding of the production problems by material and process engineers and of the materials and processes by production engineers. This program consisted of formal presentations on May 23 and informal discussions on May 24. The topics chosen for formal presentation were suggested by the people of AS/KCD, EG G, Salem, and SNL involved with the design, development and production of switch tubes. The topics selected were generic. They were not directed to any specific switch tube but rather to all switch tubes in production and development. This document includes summaries of the material presented at the formal presentation on May 23.

More Details

Diffraction patterns produced by periodic and turbulent flowing gases including applications of photorefractive temporal filtering

Corvo, A.

The diffraction patterns produced by passing a laser beam through two different types of flowing gases are calculated. The first type of flow consists of periodic lines of gas flowing transverse to the beam's propagation. The second flow is turbulent. The measurable parameters in the diffraction patterns are derived and related to the gas temperature, pressure, velocity, and (in the case of the turbulent flow) to the flow's structure constant. A discussion on using the photorefractive effect to study turbulent flows is also given. In the latter case a method that relates the flow's structure constant to the decay time of the photorefractive crystal is given. 24 refs., 11 figs.

More Details

Technical basis for a conceptual model in unsaturated tuff for the NEFTRAN-S code

Leigh, Christi D.

NEFTRAN-S was developed by Sandia National Laboratories for the United States Environmental Protection Agency as part of a program providing technical support for re-promulgation of the standard 40 CFR 191. The code is intended to provide realistic estimates of releases to the environment that could result from disposal of radioactive waste in geologic subsurfaces. One of the geologic environments that will be considered by the EPA in their analyses is unsaturated tuff. The information given in this report is intended to provide a conceptual model for the NEFTRAN-S code for calculations involving a generic site in unsaturated tuff. Information about the phenomena expected to dominate transport and methods for modeling transport in an unsaturated medium are presented. NEFTRAN-S calculations using this conceptual model are compared to TOSPAC calculations for three possible infiltration rates. TOSPAC is the code currently used in performance assessment for an unsaturated tuff site at Yucca Mountain in Nevada. 14 refs., 21 figs., 22 tabs.

More Details

Estimation of Geochemical Behavior of Concretes Placed at Yucca Mountain

Hinkebein, Thomas E.

The prediction of the chemical alteration of cementitious sealing materials and other cementitious components such as liners in the tuffaceous environment of Yucca Mountain is an essential element in understanding the longevity of these materials. This study uses a chemical equilibrium model to obtain information about the chemical reaction of ground water with concretes. Because concretes, cements, and grouts are metastable assemblages, it is expected that these materials will dissolve, cause secondary precipitations and react with the environment. These reactions will alter the porosity and hydraulic conductivity of the concretes. While the importance of these chemical and conductivity changes has not been completely assessed, this study provides insight into the importance of this chemical alteration.

More Details

Radiation Measurements for Verifying the Loading of Burnup Credit Casks

Ewing, R.I.

Radiation measurement have been used for many years to aid in the characterization, handling, and processing of spent nuclear fuel. Applications have included radiation protection, international safeguards, fissile content estimation for reprocessing, and verification of records and calculations. The application of radiation measurements to support the identification of spent fuel assemblies for loading into burnup credit'' transport casks is of interest in the cask development program. A possible alternative to measurements is to use the administrative controls and operational procedures that have been used at reactor sites that make use of burnup credit for spent fuel storage. Experience at such sites needs to be carefully analyzed for its applicability to the misloading and misidentification probabilities. Since there are over 40,000 spent fuel assemblies stored at more than one hundred locations in the US, it is important to determine carefully the necessity for and applicability of any measurement requirement. It is imperative that any measurement system selected be as simple, inexpensive, quick, and non-intrusive as possible. In this report we will consider the information available from measurements of spent fuel that has cooled for more than ten years and examine the possible application of existing instrumentation to verifying the loading of burnup credit casks.

More Details

Mechanical Property Condition Monitoring of Cables Exposed to Long-Term Thermal and Radiation Aging: XLPO Results

Jacobus, M.J.

Sandia National Laboratories is conducting long-term aging research on representative samples of nuclear power plant Class 1E cables to determine the suitability of these cables for extended life (beyond the 40-year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. This paper provides some results of mechanical measurements that were performed on cross-linked polyolefin (XLPO) cables and cable materials aged at relatively mild, simultaneous thermal and radiation exposure conditions for period of up to nine months. The mechanical measurements discussed in this paper include tensile strength, ultimate elongation, hardness, and compressive modulus. The modulus measurements were performed using an indenter developed at Franklin Research Center under EPRI sponsorship.

More Details

Exploratory battery technology development report for FY90

Magnani, N.J.

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy's Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of advanced rechargeable batteries for stationary energy storage applications. This report details the technical achievements realized during fiscal year 1990. 82 figs., 40 tabs.

More Details

Quality assurance procedures for computer software supporting performance assessments of the Waste Isolation Pilot Plant. [Contains glossary]

Rechard, Robert P.

This document presents the quality assurance (QA) philosophy and procedures for software used by the Performance Assessment Division of the Nuclear Waste Technology Department (NWTD) of Sandia National Laboratories, which directly supports the Waste Isolation Pilot Plant (WIPP). Software procedures described herein will be incorporated into the general Performance Assessment Quality Assurance Procedures (QAP 2-2) and will apply to all Sandia and Sandia contractor activities related to Performance Assessment (except where the contractor has its own NWTD-approved QA procedures). This report presented the philosophy behind the QA procedures, provides the standards adopted for Performance Assessment software, discusses the implementation of these standards, and summarizes the software executive package, CAMCON, which aids in implementing the standards. 24 refs., 6 figs., 5 tabs.

More Details

Load-Balancing and Performance of a Gridless Particle Simulation on MIMD, SIMD, and Vector Supercomputers

Plimpton, Steven J.

Our charged particle simulation models a relativistic electron beam for which the field solution is local and thus requires no grid. We have implemented the simulation on a CRAY and on two parallel machines, a nCUBE 2 and Connection Machine. We present implementation details and contrast the approaches necessary for the three architectures. On the parallel machines a dynamic load-balancing problem arises because the beam grows uniformly in one dimension from a few hundred to hundreds of thousands of particles as the simulation progresses. We discuss a folded Gray-code mapping of the processors to the length scale of the simulation that expands (or shrinks) as the beam changes length so as to minimize inter-processor communication. This improves the efficiency of the nCUBE version of the simulation which runs at 10x the speed of the vectorized CRAY version.

More Details

PWR dry containment parametric studies

Gido, R.G.

Surry was used as a representative dry containment plant for the evaluation of possible ways that containment performance could be improved. Sensitivity studies using the NUREG-1150 models and methodologies were used to estimate the reduction of risk potentials resulting from bypass scrubbing and DCH partial depressurization. These studies showed that the greatest reduction of risk occurs when bypass releases are mitigated by scrubbing or prevented. High-pressure DCH are also important. The CONTAIN code was used to estimate reduction in peak containment pressure resulting from mitigation actions including venting, partial depressurization and {approximately}3 bar with igniters. Limited studies of the benefits of venting and inerting were made, but additional investigations are needed to complete this area of investigation. A brief discussion regarding concepts to mitigate the consequences of bypass is presented. CONTAIN-code calculations were performed to investigate the possible overpressurization of the containment for the station blackout scenario. 30 refs., 24 figs., 17 tabs.

More Details

Analyses of terminal flyer plate velocities for various cased explosive configurations

Vigil, Manuel G.

Analytical equations for explosively accelerated flyer plates are used to generate graphical solutions to flyer problems. Given the problem geometrical configuration, explosive weight, flyer weight, tamping weight and Gurney velocity, the graphical representation of the calculated data allows for a fast approximation of the final or maximum flyer velocity. The graphical solution for flyer velocity is particularly useful when a computer is not available. The graphical analysis scheme can be used with any explosive, tamper and flyer materials. Analytical data are presented for grazing, spherical, cylindrical, open, symmetric and asymmetric sandwich explosive configurations. 13 refs., 7 figs., 4 tabs.

More Details

Grain Boundary Chemistry in Al-Cu Metallizations as Determined by Analytical Electron Microscopy

Materials Research Society Symposia Proceedings

Michael, Joseph R.

Al with additions of Cu is commonly used as the conductor metallizations for integrated circuits (ICs). As the packing density of ICs increases, interconnect lines are required to carry ever higher current densities. Consequently, reliability due to electromigration failure becomes an increasing concern. Cu has been found to increase the lifetimes of these conductors, but the mechanism by which electromigration is improved is not yet fully understood. In order to evaluate certain theories of electromigration it is necessary to have a detailed description of the Cu distribution in the Al microstructure, with emphasis on the distribution of Cu at the grain boundaries. In this study analytical electron microscopy (AEM) has been used to characterize grain boundary regions in an Al-2 wt.% Cu thin film metallization on Si after a variety of thermal treatments. The results of this study indicate that the Cu distribution is dependent on the thermal annealing conditions. At temperatures near the θ phase (CuAl2) solvus, the Cu distribution may be modelled by the collector plate mechanism, in which the grain boundary is depleted in Cu relative to the matrix. At lower temperatures, Cu enrichment of the boundaries occurs, perhaps as a precursor to second phase formation. Natural cooling from the single phase field produces only grain boundary depletion of Cu consistent with the collector-plate mechanism. The kinetic details of the elemental segregation behavior derived from this study can be used to describe microstructural evolution in actual interconnect alloys.

More Details

The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

Butcher, B.M.

A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., {le} 10{sup {minus}18}m{sup 2}) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs.

More Details

Phenomena affecting morphology of microporous poly(acrylonitrile) prepared via phase separation from solution

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Lagasse, Robert R.

Microporous polymers are useful for applications as diverse as separation membranes and physical supports for chemically active species. One of the most important preparation methods employs thermal demixing of solution. Differences in the morphology of thermally demixed 2 wt% solutions of PAN in maleic anhydride cannot be explained by existing models, which are based on phase diagrams. An explanation based on degradation of the polymer is not supported by GPC, NMR, or FTIR experiments. We speculate that the physical structure of the polymer in solution, involving either intramolecular dimensions or intermolecular aggregation, has an important effect on the morphology.

More Details

Tunnel detection using a surface line current and borehole electromagnetic field measurements

Shope, S.M.; Wayland Jr., J.R.; Lee, D.O.

A new technique for tunnel detection and location has recently been theoretically modeled and experimentally demonstrated. The objective of this research is to develop a general method for remotely detecting the presence of unauthorized tunneling activities using one or more boreholes and a surface source. A line current or dipole-dipole array, positioned on or near the surface of the earth, is used as the TE current source. Subsurface electric and magnetic field measurements are made in a borehole that is situated near a suspected tunnel location. The presence of a tunnel causes subsurface scattering of the field components created by the source. Both the electric and magnetic field strength and phase data is perturbed by the presence of a nearby tunnel. The scattered fields are observed on both sides of the tunnel relative to the source position. This paper will describe the development electromagnetic scattering models using a buried cylinder to represent a tunnel. A homogeneous whole-space model will be used. 5 refs., 20 figs.

More Details

Investigation of oil well drill pipe stress corrosion cracking failures

Van Den Avyle, J.A.; Scully, J.R.

Eight samples of 4.5 in. steel oil well drill pipe which had perforated or fractured in use were analyzed to determine the reasons for failure. These pipe sections were used for drilling in the Permian Basin fields of southeastern New Mexico and western Texas. Six of the eight samples failed by a common mechanism: stress corrosion cracks initiated at the insides of the pipes at the bottoms of large corrosion blisters which formed under a plastic protective layer. Stress corrosion cracking (SCC) was driven by a differential oxygen concentration cell between the drilling fluid (high oxygen) and the bottom of the blisters (low oxygen). The stress corrosion process occurs by a film rupture-plastic slip-electrochemical dissolution mechanism. Thus crack propagation rates may be altered by chemical modification of drilling fluids. Additional crack extension occurred by fatigue in some samples; the extent of fatigue cracking apparently was determined by the later cyclic history of the pipe. Treatment of the drilling fluids to lower the oxygen concentration and thus the driving force for SCC has been shown to decrease drill pipe loss by perforation in limited drilling to date. 16 refs., 8 figs.

More Details
Results 95526–95550 of 96,771
Results 95526–95550 of 96,771