Publications

4 Results

Search results

Jump to search filters

Center of pressure calculations for a bent-axis vehicle

Rutledge, W.H.

Bent-axis maneuvering vehicles provide a unique type of control for a variety of supersonic and hypersonic missions. Unfortunately, large hinge moments, incomplete pitching moment predictions, and a misunderstanding of corresponding center of pressure calculations have prevented their application. A procedure is presented for the efficient design of bent-axis vehicles given an adequate understanding of origins of pitching moment effects. In particular,sources of pitching moment contributions will be described including not only normal force, but inviscid axial force and viscous effects as well. Off-centerline center of pressure effects are first reviewed for symmetric hypersonic sphere-cone configurations. Next the effects of the bent-axis geometry are considered where axial force, acting on the deflected tail section, can generate significant pitching moment components. The unique relationship between hinge moments and pitching moments for the bent-axis class of vehicles is discussed. 15 refs.

More Details

Grid sensitivity in low Reynolds number hypersonic continuum flows

Rutledge, W.H.

A computational scheme is presented to solve the unsteady Navier-Stokes equations over a blunt body at high altitude, high Mach number atmospheric reentry flow conditions. This continuum approach is directed to low Reynolds/low density hypersonic flows by accounting for non-zero bulk viscosity effects in near frozen flow conditions. A significant difference from previous studies is the inclusion of the capability to model non-zero bulk viscosity effects. The grid definition for these low Reynolds number, viscous dominated flow fields is especially important in terms of numerical stability and accurate heat transfer solutions. 11 refs., 15 figs.

More Details

Effect of the grid system on heat transfer computations for high speed flows

Rutledge, W.H.

Difficulties in the accurate heat transfer computation of high speed, blunt body flows have been encountered by numerous researchers. The primary reason for these difficulties has been shown to be the grid dependency of the wall flux quantities. Obviously, the accuracy of the computed heat fluxes will, to a certain extent, depend on the particular numerical scheme employed. This article will be limited to the investigation of the flux vector splitting technique. An attempt has been made to develop procedures which will provide guidelines for selecting appropriate grid systems and, in particular, the grid line distribution near the surface for accurate heat transfer computations. The results have clearly shown the dependency of the heat flux quantities on the grid system. In addition, it is shown that changes in flow Mach number and/or Reynolds number may require further refinement of the grid system. 11 refs., 8 figs.

More Details

Effect of bulk viscosity in low density, hypersonic blunt body flows

Rutledge, W.H.

A computational fluids dynamics scheme is presented to solve the unsteady Thin-Layer Navier-Stokes (TLNS) equations over a blunt body at high altitude, high Mach number atmospheric reentry flow conditions. This continuum approach is directed to low density hypersonic flows by accounting for non-zero bulk viscosity effects in near frozen flow conditions. The TLNS equations are solved over an axisymmetric body at zero incidence relative to the free stream. The time dependent axisymmetric governing equations are transformed into a computational plane, then cast into weak conservative form and solved using a first-order fully implicit scheme in time with second-order flux vector splitting for spatial derivatives. The physical domain is defined over representative sphere and sphere/cone geometries using a body-fitted clustered algebraic grid within a fixed domain (i.e., shock capturing). At the present time, nonequilibrium thermo-chemistry effects are not modeled. Catalytic wall, ionization and radiation effects are also excluded from the current analysis. However, the significant difference from previous studies is the inclusion of the capability to model non-zero bulk viscosity effects. The importance of bulk viscosity is reviewed and blunt body flow field solutions are presented to illustrate the potential contribution of this phenomena at high altitude hypersonic conditions. The current technique is compared with experimental data and other approximate continuum solutions. A variety of test cases are also presented for a wide range of free stream Mach conditions. 18 refs., 42 figs.

More Details
4 Results
4 Results