Publications

137 Results

Search results

Jump to search filters

Reuter, B.W., Geraci, G., Wildey, T., & Wildey, T. (2024). Multfidelity Estimators for Non-Deterministic Models [Conference Presentation]. 10.2172/2540436

Wildey, T., Geraci, G., Reuter, B.W., & Reuter, B.W. (2023). The Approximate Control Variate Framework for Efficient Multifidelity Uncertainty Quantification of Non-Deterministic Models [Conference Presentation]. 10.2172/2430535

Foulk, J.W., Robbe, P., Lim, H., Wildey, T., de Zapiain, D.M., & de Zapiain, D.M. (2023). The multifaceted nature of uncertainty in structure-property linkage with crystal plasticity finite element model [Conference Presentation]. 10.2172/2540528

Wildey, T. (2023). A Scalable Variational Approach for Solving Data-Consistent Stochastic Inverse Problems [Conference Presentation]. 10.2172/2431041

Wildey, T. (2023). Estimating the Error in Solutions to Stochastic Inverse Problems When Using Machine Learning Surrogates [Conference Presentation]. 10.2172/2431500

Foulk, J.W., Robbe, P., de Zapiain, D.M., Wildey, T., Lim, H., & Lim, H. (2023). The multifaceted nature of uncertainty in structure-property linkage with crystal plasticity finite element model [Conference Presentation]. 10.2172/2431686

Yen, T.Y., Wildey, T., & Wildey, T. (2023). Transferring Properties of Analogous Datasets Through Data-Informed Latent Spaces Using Heterogeneous Metaphoric Data Fusion [Conference Poster]. 10.2172/2431864

Yen, T.Y., Wildey, T., & Wildey, T. (2023). Measuring and Assessing Uncertainty in Data Fusion Algorithms [Conference Presentation]. 10.2172/2431894

White, R.D., Jakeman, J.D., Wildey, T., & Wildey, T. (2023). Using Data-Consistent Inversion to Build Population-Informed Priors for Bayesian Inference [Conference Presentation]. 10.2172/2540422

Foulk, J.W., Robbe, P., Wildey, T., de Zapiain, D.M., Lim, H., & Lim, H. (2022). The multifaceted nature of uncertainty in structure-property linkage with crystal plasticity finite element model [Conference Proceeding]. https://www.osti.gov/biblio/2432135

Foulk, J.W., Sun, J., Liu, D., Wang, Y., Wildey, T., & Wildey, T. (2022). A Stochastic Reduced-Order Model for Statistical Microstructure Descriptors Evolution. Journal of Computing and Information Science in Engineering, 22(6). 10.1115/1.4054237

Foulk, J.W., Robbe, P., Wildey, T., de Zapiain, D.M., Lim, H., & Lim, H. (2022). The multifaceted uncertainty nature of structure-property linkage with crystal plasticity finite element model [Conference Paper]. 10.2514/6.2023-0525

Yen, T.Y., Wildey, T., & Wildey, T. (2022). Leveraging Physics-based Surrogates for Efficient Density Estimation of Sparse Observable Data on Low-dimensional Manifolds [Conference Presentation]. 10.2172/2005979

Foulk, J.W., Wildey, T., Lim, H., & Lim, H. (2022). Uncertainty Quantification of Constitutive Models in Crystal Plasticity Finite Element Method [Conference Presentation]. 10.2172/2005454

Foulk, J.W., Wildey, T., Lim, H., & Lim, H. (2022). Microstructure-Sensitive Uncertainty Quantification for Crystal Plasticity Finite Element Constitutive Models Using Stochastic Collocation Methods. Frontiers in Materials, 9. 10.3389/fmats.2022.915254

Eldred, M., Adams, B.M., Geraci, G., Portone, T., Ridgway, E.M., Stephens, J.A., Wildey, T., & Wildey, T. (2022). Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results. 10.2172/1885882

Yen, T.Y., Wildey, T., & Wildey, T. (2022). Constructing Data-consistent Solutions to Stochastic Inverse Problems with Sparse Observable Data [Conference Presentation]. 10.2172/2005248

Wildey, T. (2022). Estimating Aleatoric and Epistemic Uncertainty in Solutions to Stochastic Inverse Problems Using Machine Learning Surrogate Models [Conference Presentation]. 10.2172/2005273

Harper, G.B., Wildey, T., & Wildey, T. (2022). Data Compression Techniques for Large-Scale Memory-Bound Finite Element Applications [Conference Poster]. 10.2172/2005387

Foulk, J.W., Wildey, T., Lim, H., & Lim, H. (2022). Microstructure-Sensitive UQ for Materials Constitutive Models in Crystal Plasticity Finite Element Method [Conference Poster]. 10.2172/2004262

Wildey, T., Geraci, G., Eldred, M., Jakeman, J.D., Davis, O., Portone, T., Yen, T.Y., Reuter, B.W., Gorodetsky, A., Rushdi, A., Schiavazzi, D., Partin, L., & Partin, L. (2022). Embedded uncertainty estimation for data-driven surrogates to enable trustworthy ML for UQ [Conference Presentation]. 10.2172/2003926

Yen, T.Y., Wildey, T., & Wildey, T. (2022). Using Manifold Learning to Enable Computationally Efficient Stochastic Inversion with High-dimensional Data [Conference Presentation]. 10.2172/2003989

Reuter, B.W., Wildey, T., & Wildey, T. (2022). Synchronous and Asynchronous Time Integration for Multiscale Simulations Using Hybridized Finite Element Methods [Conference Presentation]. 10.2172/2004007

Reuter, B.W., Geraci, G., Wildey, T., Eldred, M., & Eldred, M. (2022). Multifidelity Uncertainty Quantification For Non-Deterministic Models [Conference Presentation]. 10.2172/2003426

Foulk, J.W., Wildey, T., Furlan, J.M., Krishnan, P., Visintainer, R.J., McCann, S., & McCann, S. (2022). aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture. Structural and Multidisciplinary Optimization, 65(4). 10.1007/s00158-021-03102-y

Foulk, J.W., Wildey, T., & Wildey, T. (2022). Solving inverse problems in process-structure-property linkage with Gaussian process regression [Conference Presentation]. 10.2172/2002172

Yen, T.Y., Wildey, T., Butler, T., & Butler, T. (2022). Quantifying Aleatoric and Epistemic Uncertainties in RLC Circuits with Data-consistent Inversion [Conference Poster]. 10.2172/2002240

Wildey, T., Butler, T., Yen, T.Y., & Yen, T.Y. (2022). A Probabilistic Characterization of Aleatoric and Epistemic Uncertainty in Solutions to Stochastic Inverse Problems Using Machine Learning Surrogate Models [Conference Presentation]. 10.2172/2002264

Reuter, B.W., Geraci, G., Wildey, T., & Wildey, T. (2022). Efficient Multifidelity Strategies for Uncertainty Quantification of Non-Deterministic Models [Conference Presentation]. 10.2172/2002277

Eldred, M., Geraci, G., Gorodetsky, A.A., Jakeman, J.D., Portone, T., Wildey, T., Rushdi, A., Seidl, D.T., & Seidl, D.T. (2021). The Dakota Project: Connecting the Pipeline from Uncertainty Quantification R&D to Mission Impact [Presentation]. https://www.osti.gov/biblio/1891078

Wildey, T., Butler, T., Jakeman, J.D., Foulk, J.W., & Foulk, J.W. (2021). Solving Stochastic Inverse Problems for Property-Structure Relationships in Computational Materials Science [Conference Presentation]. 10.2172/1890916

Wildey, T., Butler, T., Jakeman, J.D., & Jakeman, J.D. (2021). Combining Measure Theory and Bayes? Rule to Solve a Stochastic Inverse Problem [Conference Presentation]. 10.2172/1877851

Foulk, J.W., Tranchida, J., Wildey, T., Thompson, A.P., & Thompson, A.P. (2021). Multi-fidelity ML/UQ and Bayesian Optimization for Materials Design: Application to Ternary Random Alloys [Conference Poster]. 10.2172/1853874

Foulk, J.W., Wildey, T., & Wildey, T. (2021). Solving inverse problems for process-structure linkages using asynchronous parallel Bayesian optimization [Conference Presentation]. 10.2172/1854075

Foulk, J.W., Wildey, T., & Wildey, T. (2021). Solving stochastic inverse problems for property-structure linkage using data-consistent inversion and ML [Conference Poster]. 10.2172/1848050

Foulk, J.W., Wildey, T., Tranchida, J., Thompson, A.P., & Thompson, A.P. (2020). Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys. Journal of Chemical Physics, 153(7). 10.1063/5.0015672

Foulk, J.W., Mitchell, J.A., Swiler, L.P., Wildey, T., & Wildey, T. (2020). An active learning high-throughput microstructure calibration framework for solving inverse structure–process problems in materials informatics. Acta Materialia, 194(C), pp. 80-92. 10.1016/j.actamat.2020.04.054

Foulk, J.W., Wildey, T., McCann, S., & McCann, S. (2020). sMF-BO-2CoGP: A sequential multi-fidelity constrained Bayesian optimization framework for design applications. Journal of Computing and Information Science in Engineering, 20(3). 10.1115/1.4046697

Foulk, J.W., Sun, J., Wang, Y., Liu, D., Wildey, T., & Wildey, T. (2020). Multiscale stochastic reduced-order model for uncertainty propagation using Fokker-Planck equation with microstructure evolution applications. arXiv preprint. https://www.osti.gov/biblio/1834331

Foulk, J.W., Rodgers, T.M., Wildey, T., & Wildey, T. (2020). Reification of latent microstructures: On supervised unsupervised and semi-supervised deep learning applications for microstructures in materials informatics. 10.2172/1673174

Wildey, T., Bruder, L., Bui-Thanh, T., Butler, T., Jakeman, J.D., Marvin, B., Foulk, J.W., Walsh, S., & Walsh, S. (2019). Moving Beyond Forward Simulation to Enable Data-informed Physics-based Predictions [Presentation]. https://www.osti.gov/biblio/1646273

Wildey, T., Butler, T., Jakeman, J.D., & Jakeman, J.D. (2019). Convergence of Probability Densities using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1641989

Wildey, T., Butler, T., Jakeman, J.D., Bruder, L., & Bruder, L. (2019). Solving Stochastic Inverse Problems using Approximate Push-forward Densities based on a Multi-fidelity Monte Carlo Method [Conference Poster]. https://www.osti.gov/biblio/1641047

Foulk, J.W., Wang, Y., Wildey, T., & Wildey, T. (2019). A step towards a versatile Bayesian optimization: constrained asynchronous batch-parallel multi-fidelity and mixed-integer extensions [Conference Poster]. https://www.osti.gov/biblio/1640079

Seidl, D.T., van Bloemen Waanders, B., Wildey, T., & Wildey, T. (2019). Simultaneous inversion of shear modulus and traction boundary conditions in biomechanical imaging. Inverse Problems in Science and Engineering, 28(2). 10.1080/17415977.2019.1603222

Foulk, J.W., Furlan, J.M., Pagalthivarthi, K.V., Visintainer, R.J., Wildey, T., Wang, Y., & Wang, Y. (2019). WearGP: A computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processes. Wear, 422-423(C), pp. 9-26. 10.1016/j.wear.2018.12.081

Wildey, T., Muralikrishnan, S., Bui-Thanh, T., & Bui-Thanh, T. (2019). Unified geometric multigrid algorithm for hybridized high-order finite element methods. SIAM Journal on Scientific Computing, 41(5), pp. S172-S195. 10.1137/18M1193505

Foulk, J.W., Wildey, T., McCann, S., & McCann, S. (2019). SBF-BO-2CoGP: A sequential bi-fidelity constrained Bayesian optimization for design applications [Conference Poster]. Proceedings of the ASME Design Engineering Technical Conference. 10.1115/DETC2019-97986

Wildey, T., Butler, T., Jakeman, J.D., Bui-Thanh, T., Marvin, B., Bruder, L., & Bruder, L. (2018). Developing Scalable and Multi-fidelity Approaches for Push-forward Based Inference [Conference Poster]. https://www.osti.gov/biblio/1596420

Butler, T., Jakeman, J.D., Wildey, T., & Wildey, T. (2018). Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification. SIAM Journal on Scientific Computing, 40(5). 10.1137/18M1181675

Walsh, S.N., Wildey, T., Jakeman, J.D., & Jakeman, J.D. (2018). Optimal experimental design using a consistent Bayesian approach. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 4(1). 10.1115/1.4037457

Wildey, T., Butler, T., Jakeman, J.D., & Jakeman, J.D. (2018). Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems. SIAM Journal on Scientific Computing, 40(2), pp. A984-A1011. 10.1137/16m1087229

Mayr, M., Cyr, E.C., Shadid, J.N., Pawlowski, R., Wildey, T., Scovazzi, G., Zeng, X., Phillips, E., Conde, S., & Conde, S. (2017). Implicit-Explicit (IMEX) Time Integration for CFD & Multi-Physics Problems [Presentation]. https://www.osti.gov/biblio/1458227

Mayr, M., Cyr, E.C., Shadid, J.N., Pawlowski, R., Wildey, T., Scovazzi, G., Zeng, X., Phillips, E., Conde, S., & Conde, S. (2017). Implicit-Explicit (IMEX) Time Integration for Multi-Physics: Application to ALE-based CFD Simulations [Conference Poster]. https://www.osti.gov/biblio/1458228

Seidl, D.T., van Bloemen Waanders, B., Wildey, T., & Wildey, T. (2017). Simultaneous Estimation of Material Parameters and Neumann Boundary Conditions in a Linear Elastic Model by PDE-Constrained Optimization [Conference Poster]. https://www.osti.gov/biblio/1458297

Cyr, E.C., Shadid, J.N., Wildey, T., Phillips, E., Robinson, A.C., Miller, S., Pawlowski, R., & Pawlowski, R. (2016). Implicit-Explicit (IMEX) Time Integration for Multi-Physics: Application to ALE and Plasma Simulation [Conference Poster]. https://www.osti.gov/biblio/1401944

Smith, T.M., Shadid, J.N., Cyr, E.C., Pawlowski, R., Wildey, T., & Wildey, T. (2016). Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities. Journal of Computational Physics, 321(C), pp. 321-341. 10.1016/j.jcp.2016.04.062

Wildey, T., van Bloemen Waanders, B., Seidl, D.T., Arbogast, T., Ganis, B., Girault, V., Pencheva, G., Wheeler, M.F., Xue, G., Yotov, I., Tavener, S., Vohralik, M., & Vohralik, M. (2016). Multiscale Mortar Methods: Theory Applications and Future Directions [Conference Poster]. https://www.osti.gov/biblio/1365248

Wildey, T., Cyr, E.C., Shadid, J.N., van Bloemen Waanders, B., Kouri, D.P., Bishop, J.E., Tavener, S., Butler, T., Prudhomme, S., Dawson, C., & Dawson, C. (2016). Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification [Conference Poster]. https://www.osti.gov/biblio/1345103

Phipps, E.T., Red-Horse, J.R., Wildey, T., Constantine, P., Ghanem, R., Arnst, M., & Arnst, M. (2015). Stochastic Dimension Reduction of Multiphysics Systems through Measure Transformation [Conference Poster]. https://www.osti.gov/biblio/1321810

Wildey, T., Shadid, J.N., Cyr, E.C., Jakeman, J.D., Butler, T., & Butler, T. (2015). Adjoint-Based a Posteriori Error Estimation and Uncertainty Quantification for Transient Nonlinear Problems with Discontinuous Solutions [Conference Poster]. https://www.osti.gov/biblio/1323036

Wildey, T., Jakeman, J.D., Butler, T., Cyr, E.C., Shadid, J.N., & Shadid, J.N. (2015). Adjoint-Based a Posteriori Error Estimation and Uncertainty Quantification for Shock-Hydrodynamic Applications [Conference Poster]. https://www.osti.gov/biblio/1279685

Wildey, T., Shadid, J.N., Cyr, E.C., Constantine, P., & Constantine, P. (2015). Enabling Efficient Uncertainty Quantification Using Adjoint-based Techniques. 10.2172/1179153

Adams, B.M., Jakeman, J.D., Swiler, L.P., Stephens, J.A., Vigil, D., Wildey, T., Bauman, L.E., Bohnhoff, W.J., Dalbey, K., Eddy, J.P., Ebeida, M., Eldred, M., Hough, P.D., Hu, K., & Hu, K. (2014). Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual. 10.2172/1177048

Adams, B.M., Jakeman, J.D., Swiler, L.P., Stephens, J.A., Vigil, D., Wildey, T., Bauman, L.E., Bohnhoff, W.J., Dalbey, K., Eddy, J.P., Ebeida, M., Eldred, M., Hough, P.D., Hu, K., & Hu, K. (2014). Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :. 10.2172/1177077

Swiler, L.P., Wildey, T., & Wildey, T. (2014). Sensitivity of Precipitation to Parameter Values in the Community Atmosphere Model Version 5. 10.2172/1204103

Shadid, J.N., Pawlowski, R., Cyr, E.C., Wildey, T., & Wildey, T. (2013). Thermal Hydraulic Simulations, Error Estimation and Parameter Sensitivity Studies in Drekar::CFD. 10.2172/1204072

Phipps, E.T., Wildey, T., & Wildey, T. (2013). Efficient uncertainty propagation for network multiphysics systems. Proposed for publication in International Journal for Numerical Methods in Engineering.. https://www.osti.gov/biblio/1063360

Eldred, M., Wildey, T., & Wildey, T. (2012). Propagation of model form uncertainty for thermal hydraulics using RANS turbulence models in Drekar. 10.2172/1051699

137 Results
137 Results