Cooperative Verification Using Radiography Behind an Information Barrier
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Our work in radiographic image matching has centered on the use of SURF (Speeded Up Robust Features) for feature detection, and FLANN (Fast Learning Artificial Neural Network) for feature matching. We discovered that while the SURF process does return information on location, scale, and rotation for each detected feature, they are not essential for image matching. The nature of the remaining feature detection data does not appear to contain any useful information in terms of reconstructing a useful portion of an image, and therefore is not amenable to reconstructing the original image. This led us to wonder if, in fact, we had discovered an irreversible process; the original image could not be constructed from the remaining feature data. Additional detail on the derivation of the image processing and matching algorithms and the irreversibility hypothesis are available in the final SAND Report documenting our previous LDRD work (SAND2015-9665 “Processing Radiation Images Behind an Information Barrier for Automatic Warhead Authentication” Little, Wilson, Weber and Novick, 2015).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The original Trusted Radiation Identification System (TRIS) was developed from 1999-2001, featuring information barrier technology to collect gamma radiation template measurements useful for arms control regime operations. The first TRIS design relied upon a multichannel analyzer (MCA) that was external to the protected volume of the system enclosure, undesirable from a system security perspective. An internal complex programmable logic device (CPLD) contained data which was not subject to software authentication. Physical authentication of the TRIS instrument case was performed by a sensitive but slow eddy-current inspection method. This paper describes progress to date for the Next Generation TRIS (NG-TRIS), which improves the TRIS design. We have incorporated the MCA internal to the trusted system volume, achieved full authentication of CPLD data, and have devised rapid methods to authenticate the system enclosure and weld seals of the NG-TRIS enclosure. For a complete discussion of the TRIS system and components upon which NG-TRIS is based, the reader is directed to the comprehensive user's manual and system reference of Seager, et al.