Publications

Results 26–50 of 78

Search results

Jump to search filters

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

SAE International Journal of Engines

Zha, Kan Z.; Busch, Stephen B.; Warey, Alok; Peterson, Richard C.; Kurtz, Eric

In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions. Utilizing high-speed soot natural luminosity (NL) imaging, 20 kHz time-resolved combustion image velocimetry (CIV) technique is developed to quantify the macro-scale motions of soot clouds during the mixing-controlled portion of combustion. Under a part-load conventional combustion regime, CIV-resolved swirl ratio and the tumble-plane projection of velocity fields confirm that the injection-induced redistribution of angular momentum, rather than squish/reverse squish flow, is a dominant source for swirl amplification between two piston geometries. A strong connection has been found between the CIV-resolved combusting flow structure and its succeeding enhanced late-stage burn rate. With SOI main shortly after TDC, combustion in stepped-lip piston exhibits shorter late-burn duration (CA50-CA90) and faster burn rate compared to re-entrant piston. In the same boundary condition, a unique combusting flow structure is observed with CIV in the stepped-lip piston: a long-lasting flow structure with opposing radial velocity directions between the squish region and stepped-lip region. Interestingly, this flow structure is never optically observed with the re-entrant piston. The best hypothesis is that there exists a long-lasting vertical toroidal vortex on the shoulder of stepped-lip piston crown near CA50. A phenomenological model is proposed to provide a partial, but valuable picture of late-stage combusting flow structure which is a key to understand how piston bowl geometry can influence thermal efficiency for swirl-supported diesel engines.

More Details

Experimental and Numerical Studies of Bowl Geometry Impacts on Thermal Efficiency in a Light-Duty Diesel Engine

SAE Technical Papers

Busch, Stephen B.; Zha, Kan Z.; Kurtz, Eric; Warey, Alok; Peterson, Richard

In light- and medium-duty diesel engines, piston bowl shape influences thermal efficiency, either due to changes in wall heat loss or to changes in the heat release rate. The relative contributions of these two factors are not clearly described in the literature. In this work, two production piston bowls are adapted for use in a single cylinder research engine: a conventional, re-entrant piston, and a stepped-lip piston. An injection timing sweep is performed at constant load with each piston, and heat release analyses provide information about thermal efficiency, wall heat loss, and the degree of constant volume combustion. Zero-dimensional thermodynamic simulations provide further insight and support for the experimental results. The effect of bowl geometry on wall heat loss depends on injection timing, but changes in wall heat loss cannot explain changes in efficiency. Late cycle heat release is faster with the stepped-lip bowl than with the conventional re-entrant bowl, which leads to a higher degree of constant volume combustion and therefore higher thermal efficiency. This effect also depends on injection timing. In general, increasing the degree of constant volume combustion is significantly more effective at improving thermal efficiency than decreasing wall heat loss. Maximizing thermal efficiency will require a deeper understanding of how bowl geometry impacts flow structure, turbulent mixing, and mixing-controlled combustion.

More Details

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

SAE Technical Papers

Busch, Stephen B.; Zha, Kan Z.; Perini, Federico; Reitz, Rolf; Kurtz, Eric; Warey, Alok; Peterson, Richard

Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston. While the flow structure in the conventional, re-entrant combustion chamber is dominated by a single toroidal vortex, the turbulent flow evolution in the stepped-lip combustion chamber depends more strongly on main injection timing. For the injection timing at which faster mixing controlled heat release and reduced soot emissions have been observed experimentally, the simulation predicts the formation of two additional recirculation zones created by interactions with the stepped-lip. Analysis of the CFD results reveals the mechanisms responsible for these recirculating flow structures. Vertical convection of outward radial momentum drives the formation of the recirculation zone in the squish region, while adverse pressure gradients drive flow inward near the cylinder head, thereby contributing to the formation of the second recirculation zone above the step. Bulk gas density is higher for the near-TDC injection timing than for the later injection timing. This leads to increased air entrainment into the sprays and slower spray velocities, so the sprays take longer to interact with the step, and beneficial recirculating flow structures are not obseved.

More Details

Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

Busch, Stephen B.

Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding of how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.

More Details

A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

Measurement Science and Technology

Zha, Kan Z.; Busch, Stephen B.; Park, Cheolwoong; Miles, Paul C.

In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. To ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortion quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches. The proposed hybrid back-projection method for the first time provides a time-efficient and robust way to process planar PIV measurements conducted in an optical research engine with temporally- and spatially-varying optical distortion. This method is based upon geometric ray tracing and serves as a universal tool for the correction of optical distortion with an arbitrary but axisymmetric piston crown window geometry. Analytical analysis demonstrates that the ignorance of optical distortion change during the PIV laser temporal interval may induce a significant error in instantaneous velocity measurements. With the proposed digital dewarping method, this piston-motion-induced error can be eliminated. Uncertainty analysis with simulated particle images provides guidance on whether to back-project particle images or back-project velocity fields in order to minimize dewarping-induced uncertainties. The optimal implementation is piston-geometry-dependent. For regions with significant change in nominal magnification factor, it is recommended to apply the proposed back-projection approach to particle images prior to PIV interrogation. For regions with significant dewarping-induced particle elongation (Ep > 3), it is recommended to apply the proposed dewarping method to the vector fields resulting from PIV interrogation of raw particle image pairs.

More Details

Parametric Study of Injection Rates With Solenoid Injectors in an Injection Quantity and Rate Measuring Device

Journal of Engineering for Gas Turbines and Power

Busch, Stephen B.; Miles, Paul C.

A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot-main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. A comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for a single injection but dramatically different for multiple injections with short dwells.

More Details
Results 26–50 of 78
Results 26–50 of 78