Publications

8 Results

Search results

Jump to search filters

What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results

Water Resources Research

Meigs, Lucy C.

Estimates of mass transfer timescales from 316 solute transport experiments reported in 35 publications are compared to the pore-water velocities and residence times, as well as the experimental durations. New tracer experiments were also conducted in columns of different lengths so that the velocity and the advective residence time could be varied independently. In both the experiments reported in the literature and the new experiments, the estimated mass transfer timescale (inverse of the mass-transfer rate coefficient) is better correlated to residence time and the experimental duration than to velocity. Of the measures considered, the experimental duration multiplied by 1 + β (where β is the capacity coefficient, defined as the ratio of masses in the immobile and mobile domains at equilibrium) best predicted the estimated mass transfer timescale. This relation is consistent with other work showing that aquifer and soil material commonly produce multiple timescales of mass transfer.

More Details

On the late-time behavior of tracer test breakthrough curves

Water Resources Research

Mckenna, Sean A.; Meigs, Lucy C.

We investigated the late-time (asymptotic) behavior of tracer test breakthrough curves (BTCs) with rate-limited mass transfer (e.g., in dual-porosity or multiporosity systems) and found that the late-time concentration c is given by the simple expression c = tad{c0g - [m0(∂g/∂t)]}, for t ≫ tad and tα ≫ tad, where tad is the advection time, c0 is the initial concentration in the medium, m0 is the zeroth moment of the injection pulse, and tα is the mean residence time in the immobile domain (i.e., the characteristic mass transfer time). The function g is proportional to the residence time distribution in the immobile domain; we tabulate g for many geometries, including several distributed (multirate) models of mass transfer. Using this expression, we examine the behavior of late-time concentration for a number of mass transfer models. One key result is that if rate-limited mass transfer causes the BTC to behave as a power law at late time (i.e., c ̃ t-k), then the underlying density function of rate coefficients must also be a power law with the form αk-3 as α → 0. This is true for both density functions of first-order and diffusion rate coefficients. BTCs with k < 3 persisting to the end of the experiment indicate a mean residence time longer than the experiment, and possibly an infinite residence time, and also suggest an effective rate coefficient that is either undefined or changes as a function of observation time. We apply our analysis to breakthrough curves from single-well injection-withdrawal tests at the Waste Isolation Pilot Plant, New Mexico. We investigated the late-time (asymptotic) behavior of tracer test breakthrough curves (BTCs) with rate-limited mass transfer (e.g., in dual-porosity or multiporosity systems) and found that the late-time concentration c is given by the simple expression c = tad{c0g - [m0(∂g/∂t)]}, for t ≫ tad and tα ≫ t ad, where tad is the advection time, c0 is the initial concentration in the medium, m0 is the zeroth moment of the injection pulse, and tα is the mean residence time in the immobile domain (i.e., the characteristic mass transfer time). The function g is proportional to the residence time distribution in the immobile domain; we tabulate g for many geometries, including several distributed (multirate) models of mass transfer. Using this expression, we examine the behavior of late-time concentration for a number of mass transfer models. One key result is that if rate-limited mass transfer causes the BTC to behave as a power law at late time (i.e., c t-k), then the underlying density function of rate coefficients must also be a power law with the form αk-3 as α → 0. This is true for both density functions of first-order and diffusion rate coefficients. BTCs with k < 3 persisting to the end of the experiment indicate a mean residence time longer than the experiment, and possibly an infinite residence time, and also suggest an effective rate coefficient that is either undefined or changes as a function of observation time. We apply our analysis to breakthrough curves from single-well injection-withdrawal tests at the Waste Isolation Pilot Plant, New Mexico.

More Details

Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

Meigs, Lucy C.; Beauheim, Richard L.

This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

More Details

Tracer Tests in a Fractured Dolomite: 4. Double Porosity, Multiple-Rate Mass Transfer Processes in Two-Well Convergent Flow Tests

Water Resources Research

Meigs, Lucy C.

Two-well convergent-flow tracer tests conducted in the Culebra dolomite (Rustler Formation, New Mexico, USA) are analyzed with both single-and multiple-rate, double-porosity models. Parameter estimation is used to determine the mean and standard deviation of a Iog- normal distribution of diffision rate coefficients as well as the advective porosity and longitudinal dispersivity. At two different test sites, both mukirate and single-rate models are capable of accurately modeling the observed data. Estimated model parameters are tested against breakthrough curves obtained along the same transport pathway at a different pumping rate. Implications of the rnultirate mass-transfer model at time and length scales greater than those of the tracer tests include the instantaneous saturation of a fraction of the matrix ~d the possibility of a fraction of the matrix remaining unsaturated at long times.

More Details

Tracer Tests in a Fractured Dolomite: 3. Analysis of Mass Transfer in Single-Well Injection-Withdrawal Tests

Water Resources Research

Meigs, Lucy C.

We investigated multiple-rate diffusion as a possible explanation for observed behavior in a suite of single-well injection-withdrawal (SWIW) tests conducted in a fractured dolomite. We first investigated the ability of a conventional double-porosity model and a multirate diffusion model to explain the data. This revealed that the multirate diffusion hypothesis/model is most consistent with all available data, and is the only model to date that is capable of matching each of the recovery curves entirely. Second, we studied the sensitivity of the SWIW recovery curves to the distribution of diffusion rate coefficients and other parameters. We concluded that the SWIW test is very sensitive to the distribution of rate coefficients, but is relatively insensitive to other flow and transport parameters such as advective porosity and dispersivity. Third, we examined the significance of the constant double-log late-time slopes ({minus}2. 1 to {minus}2.8), which are present in several data sets. The observed late-time slopes are significantly different than would be predicted by either conventional double-porosity or single-porosity media, and are found to be a distinctive feature of multirate diffusion under SWIW test conditions. Fourth, we found that the estimated distributions of diffusion rate coefficients are very broad, with the distributions spanning a range of at least 3.6 to 5.7 orders of magnitude.

More Details

Representation of spatial variability for modelling of flow and transport processes in the Culebra Dolomite at the WIPP site

Meigs, Lucy C.

The Waste Isolation Pilot Plant (WIPP) is a proposed repository for transuranic wastes constructed in bedded Permian-acre halite deposits in southeastern New Mexico, USA. Site-characterization studies at the WIPP site identified groundwater flow in the Culebra Dolomite Member of the Rustler Formation as the most likely Geologic pathway for radio nuclide transport to the accessible environment in the event of a breach of the WIPP repository through inadvertent human intrusion. The Culebra is a 7-m-thick, variably fractured dolomite with massive and layers. Detailed studies at all scales demonstrated that the Culebra is a heterogeneous medium. Heterogeneity in Culebra properties was incorporated into numerical simulations used for data interpretation and PA calculations in different ways, depending on the amount of data available, the certainty with which the effects of a given approach could be evaluated, and the purpose of the study. When abundant, spatially distributed data were available, the heterogeneity was explicitly included. For example, a stochastic approach was used to generate numerous, equally likely, heterogeneous transmissivity fields conditioned on head and transmissivity data. In other cases, constant parameter values were applied over the model domain. These constant values were selected and applied in two different ways. In simple cases where a conservative bounding value could be identified that would not lead to unrealistically conservative results, that value was used for all calculations. In more complex cases, parameter distributions were developed and single values of the parameters were sampled from the distributions and applied across the entire model domain for each of the PA Monte Carlo simulations. We are currently working to refine our understanding of the multiple rates of diffusion attributable to small-scale spatial variability.

More Details

Rationale for the H-19 and H-11 tracer tests at the WIPP site

Meigs, Lucy C.

The Waste Isolation Pilot Plant (WIPP) is a repository for transuranic wastes constructed in bedded Permian-age halite in the Delaware Basin, a sedimentary basin in southeastern New Mexico, USA. A drilling scenario has been identified during performance assessment (PA) that could lead to the release of radionuclides to the Culebra Dolomite Member of the Rustler Formation, the most transmissive water-saturated unit above the repository horizon. Were this to occur, the radionuclides would need to be largely contained within the Culebra (or neighboring strata) within the WIPP-site boundary through the period lasting for 10,000 years after repository closure for WIPP to remain in compliance with applicable regulations on allowable releases. Thus, processes affecting transport of radionuclides within the Culebra are of importance to PA.

More Details

Design, modeling, and current interpretations of the H-19 and H-11 tracer tests at the WIPP site

Meigs, Lucy C.

Site-characterization studies at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico, US identified ground-water flow in the Culebra Dolomite Member of the Rustler Formation as the most likely geologic pathway for radionuclide transport to the accessible environment in the event of a breach of the WIPP repository through inadvertent human intrusion. The results of recent tracer tests, as well as hydraulic tests, laboratory measurements, and re-examination of Culebra geology and stratigraphy, have led to a significant refinement of the conceptual model for transport in the Culebra. Tracer test results and geologic observations suggest that flow occurs within fractures, and to some extent within interparticle porosity and vugs connected by microfractures. Diffusion occurs within all connected porosity. Numerical simulations suggest that the data from the tracer tests cannot be simulated with heterogeneous single-porosity models; significant matrix diffusion appears to be required. The low permeability and lack of significant tracer recovery from tracers injected into the upper Culebra suggest that transport primarily occurs in the lower Culebra.

More Details
8 Results
8 Results