Publications

Results 1–50 of 97

Search results

Jump to search filters

Jones, R.E., Boyce, B.L., Frankel, A., Heckman, N.M., Khalil, M., Ostien, J.T., Rizzi, F., Tachida, K., Teichert, G.H., & Templeton, J.A. (2019). Uncertainty Quantification of Microstructural Material Variability Effects. 10.2172/1814062

Rizzi, F., Khalil, M., Jones, R.E., Templeton, J.A., Ostien, J.T., & Boyce, B.L. (2019). Bayesian modeling of inconsistent plastic response due to material variability. Computer Methods in Applied Mechanics and Engineering, 353(C). 10.1016/j.cma.2019.05.012

Jones, R.E., Rizzi, F., Templeton, J.A., Ostien, J.T., Alleman, C., Khalil, M., Frankel, A., Heckman, N.M., Boyce, B.L., Garikipati, K., & Teichert, G. (2018). Modeling material variability with uncertainty quantification and machine learning techniques [Conference Poster]. https://www.osti.gov/biblio/1592996

Jones, R.E., Rizzi, F., Templeton, J.A., Ostien, J.T., Alleman, C., Khalil, M., Frankel, A., Heckman, N.M., Boyce, B.L., Garikipati, K., & Teichert, G. (2018). Modeling material variability with uncertainty quantification and machine learning techniques [Conference Poster]. https://www.osti.gov/biblio/1592995

Jones, R.E., Rizzi, F., Templeton, J.A., Ostien, J.T., Alleman, C., Khalil, M., Frankel, A., Heckman, N.M., Boyce, B.L., Teichert, G., & Garikipati, K. (2018). Modeling material variability with uncertainty quantification and machine learning techniques [Conference Poster]. https://www.osti.gov/biblio/1592993

Khalil, M., Rizzi, F., Frankel, A., Alleman, C., Templeton, J.A., Ostien, J.T., Boyce, B.L., & Jones, R.E. (2018). Embedded Model Error and Bayesian Model Selection for Material Variability [Conference Poster]. https://www.osti.gov/biblio/1508918

Salloum, M., Fabian, N.D., Hensinger, D.M., Lee, J., Allendorf, E.M., Bhagatwala, A., Blaylock, M.L., Chen, J.H., Templeton, J.A., & Tezaur, I.K. (2018). Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets. Data Science and Engineering, 3(1), pp. 1-23. https://doi.org/10.1007/s41019-017-0042-4

Templeton, J.A., Sanders, C., & Ostien, J.T. (2018). Machine learning models of plastic flow based on representation theory. CMES - Computer Modeling in Engineering and Sciences, 117(3), pp. 309-342. 10.31614/cmes.2018.04285

Jones, R.E., Rizzi, F., Boyce, B.L., Templeton, J.A., & Ostien, J.T. (2017). Plasticity models of material variability based on uncertainty quantification techniques. Computer Methods in Applied Mechanics and Engineering. https://www.osti.gov/biblio/1429679

Debusschere, B., Sadler, L.E., Antoun, B.R., Templeton, J.A., Kolda, T.G., & May, E. (2017). Improved Equity Diversity and Inclusion to Sustain an Effective Applied Mathematics Workforce [Conference Poster]. https://www.osti.gov/biblio/1466495

Debusschere, B., Pinar, A., Sargsyan, K., Templeton, J.A., & Najm, H.N. (2017). Predictive Fidelity Interpretability and Resilience of Machine Learning Methods Applied to Scientific Simulations [Conference Poster]. https://www.osti.gov/biblio/1508933

Safta, C., Blaylock, M.L., Templeton, J.A., Domino, S.P., Sargsyan, K., & Najm, H.N. (2017). Uncertainty quantification in LES of channel flow. International Journal for Numerical Methods in Fluids, 83(4), pp. 376-401. 10.1002/fld.4272

Ling, J., Kurzawski, A., & Templeton, J.A. (2016). Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807, pp. 155-166. 10.1017/jfm.2016.615

Templeton, J.A., Erickson, L., & Foulk, J.W. (2016). A Mesh-Free Method to Predictively Simulate Solid-to-Liquid Phase Transitions in Abnormal Thermal Environments. 10.2172/1562815

Salloum, M., Fabian, N., Hensinger, D.M., Lee, J., Templeton, J.A., & Allendorf, E.M. (2016). Compressed Sensing and Reconstruction of Unstructured Mesh Datasets: Optimal Compression [Conference Poster]. https://www.osti.gov/biblio/1368786

Templeton, J.A., Blaylock, M.L., Domino, S.P., Hewson, J.C., Kumar, P.R., Ling, J., Najm, H.N., Ruiz, A., Safta, C., Sargsyan, K., Stewart, A., & Wagner, G. (2015). Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows. 10.2172/1221181

Ling, J., & Templeton, J.A. (2015). Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty. Physics of Fluids, 27(8). 10.1063/1.4927765

Templeton, J.A., Safta, C., Blaylock, M., Hewson, J., Domino, S., & Kumar, P. (2015). Calibration and Forward Uncertainty Propagation of Turbulence Models for Coarse-Grid Large-Eddy Simulation [Conference Poster]. https://www.osti.gov/biblio/1339221

Blaylock, M.L., Templeton, J.A., Safta, C., Hewson, J.C., & Domino, S.P. (2015). Model Calibration and Forward Uncertainty Quantification for Large-Eddy Simulation of Turbulent Flows [Conference Poster]. https://www.osti.gov/biblio/1245792

Jones, R.E., Ward, D.K., & Templeton, J.A. (2014). Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method. Journal of Chemical Physics, 141(18). 10.1063/1.4901035

Scott, S.N., Templeton, J.A., Ruthruff, J., Hough, P.D., & Peterson, J.P. (2014). Computational solution verification and validation applied to a thermal model of a ruggedized instrumentation package. WIT Transactions on Modelling and Simulation, 55. https://doi.org/10.2495/CMEM130021

Results 1–50 of 97
Results 1–50 of 97