Publications

Results 1–25 of 96

Search results

Jump to search filters

Jones, R.E., Boyce, B.L., Frankel, A., Heckman, N.M., Khalil, M., Ostien, J.T., Rizzi, F., Tachida, K., Teichert, G.H., Templeton, J.A., & Templeton, J.A. (2019). Uncertainty Quantification of Microstructural Material Variability Effects. https://doi.org/10.2172/1814062

Rizzi, F., Khalil, M., Jones, R.E., Templeton, J.A., Ostien, J.T., Boyce, B.L., & Boyce, B.L. (2019). Bayesian modeling of inconsistent plastic response due to material variability. Computer Methods in Applied Mechanics and Engineering, 353(C), pp. 183-200. https://doi.org/10.1016/j.cma.2019.05.012

Jones, R.E., Rizzi, F., Templeton, J.A., Ostien, J.T., Alleman, C., Khalil, M., Frankel, A., Heckman, N.M., Boyce, B.L., Teichert, G., Garikipati, K., & Garikipati, K. (2018). Modeling material variability with uncertainty quantification and machine learning techniques [Conference Poster]. https://www.osti.gov/biblio/1592993

Jones, R.E., Rizzi, F., Templeton, J.A., Ostien, J.T., Alleman, C., Khalil, M., Frankel, A., Heckman, N.M., Boyce, B.L., Garikipati, K., Teichert, G., & Teichert, G. (2018). Modeling material variability with uncertainty quantification and machine learning techniques [Conference Poster]. https://www.osti.gov/biblio/1592995

Jones, R.E., Rizzi, F., Templeton, J.A., Ostien, J.T., Alleman, C., Khalil, M., Frankel, A., Heckman, N.M., Boyce, B.L., Garikipati, K., Teichert, G., & Teichert, G. (2018). Modeling material variability with uncertainty quantification and machine learning techniques [Conference Poster]. https://www.osti.gov/biblio/1592996

Khalil, M., Rizzi, F., Frankel, A., Alleman, C., Templeton, J.A., Ostien, J.T., Boyce, B.L., Jones, R.E., & Jones, R.E. (2018). Embedded Model Error and Bayesian Model Selection for Material Variability [Conference Poster]. https://www.osti.gov/biblio/1508918

Salloum, M., Fabian, N.D., Hensinger, D.M., Lee, J., Allendorf, E.M., Bhagatwala, A., Blaylock, M., Chen, J., Templeton, J.A., Tezaur, I.K., & Tezaur, I.K. (2018). Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets. Data Science and Engineering, 3(1), pp. 1-23. https://doi.org/10.1007/s41019-017-0042-4

Debusschere, B.J., Templeton, J.A., Safta, C., Sargsyan, K., Pinar, A., Najm, H.N., & Najm, H.N. (2018). Predictive Fidelity of Machine Learning Methods Applied to Scientific Simulations [Conference Poster]. https://www.osti.gov/biblio/1513665

Jones, R.E., Rizzi, F., Boyce, B.L., Templeton, J.A., Ostien, J.T., & Ostien, J.T. (2017). Plasticity models of material variability based on uncertainty quantification techniques. Computer Methods in Applied Mechanics and Engineering. https://www.osti.gov/biblio/1429679

Debusschere, B.J., Pinar, A., Sargsyan, K., Templeton, J.A., Najm, H.N., & Najm, H.N. (2017). Predictive Fidelity Interpretability and Resilience of Machine Learning Methods Applied to Scientific Simulations [Conference Poster]. https://www.osti.gov/biblio/1508933

Debusschere, B.J., Sadler, L.E., Antoun, B.R., Templeton, J.A., Kolda, T.G., May, E., & May, E. (2017). Improved Equity Diversity and Inclusion to Sustain an Effective Applied Mathematics Workforce [Conference Poster]. https://www.osti.gov/biblio/1466495

Rizzi, F., Boyce, B.L., Jones, R.E., Ostien, J.T., Templeton, J.A., & Templeton, J.A. (2017). Bayesian Methods to Capture Inherent Material Variability in Additively Manufactured Samples [Conference Poster]. https://www.osti.gov/biblio/1456630

Results 1–25 of 96
Results 1–25 of 96