Publications

Results 26–28 of 28

Search results

Jump to search filters

The Electrical Properties of Native and Deposited Thin Aluminum Oxide Layers on Aluminum: Hydration Effects

Sullivan, J.P.

The electronic defect density of native, anodic, and synthetic Al oxide layers on Al were studied by solid state electrical measurement as a function of hydration OF the oxide. The non-hydrated synthetic Al oxide layers, which included electron cyclotron resonance (ECR) plasma deposited oxides as well as ECR plasma grown oxides, were highly insulating with electrical transport dominated by thermal emission from deep traps within the oxide. Following hydration these oxides and the native oxides exhibited a large increase in electronic defect density as evidenced by increases in the DC leakage current, reduction in the breakdown field, and increase in AC conductance. Elastic recoil detection of hydrogen revealed that hydration leads to hydrogen incorporation in the oxide films and hydrogen injection through the films into the Al layer below. The increase in electronic defect concentration is related to this hydrogenation and may play a significant role in localized corrosion initiation.

More Details

Novel low-permittivity dielectrics for Si-based microelectronics

Sullivan, J.P.

The purpose of this laboratory-directed research and development (LDRD) project was to develop and assess novel low-permittivity dielectric materials for applications as interlevel dielectrics (ILDs) in Si-based microelectronics. There were three classes of materials investigated: (1) novel covalently-bonded ceramics containing carbon, boron, and/or nitrogen, (2) fluorinated SiO{sub 2} (SiOF), and (3) plasma polymerized fluorocarbon (PPFC). The specific advantages and disadvantages for each potential low k ILD material were evaluated. It was discovered that highly energetic deposition processes are required for the formation of thermally and environmentally stable carbon or boron nitride ceramics, and the resulting films may have many potentially valuable applications, such as diffusion barriers, tribological coatings, micro-sensor materials, etc. The films are not suitable as low k ILDs, however, because the highly energetic deposition process leads to films with high atomic density, and this leads to high dielectric constants. SiOF shows a promise as low k ILD material for near-term applications, but special passivation or encapsulation strategies may be required in order to reduce two instability problems that the authors have discovered: moisture absorption and thermal instability of the SiOF/Al interface. PPFC films offer promise for even lower dielectric constant ILDs than SiOF, but it will be necessary to develop new strategies to passivate the free radicals in the films generated during deposition. These free radicals lead to increase in dielectric loss over time when the films are exposed to room ambient conditions.

More Details

Thermal stability of fluorinated SiO2 films: Effects of hydration and film-substrate interaction

Materials Research Society Symposium - Proceedings

Sullivan, J.P.

The thermal stability of fluorinated SiO2 films (SiOF) was found to be dependent on F content and the type of substrate upon which the film was deposited. SiOF films with a range of F concentrations were deposited using an electron cyclotron resonance (ECR) plasma upon Si, Al/Si, TiN/Al/Si, and Al/SiO2/Si substrates. Following deposition, the films were deliberately hydrated and/or annealed and their stability assessed. Hydration was found to only affect the high F content films. Capacitance changes with annealing in the high F content films were found to occur beginning at 200 °C. These changes, which were independent of substrate type, likely occurred due to desorption of H2O in the films. After annealing of the high F content films up to 400 °C, a reduction in F content was found for SiOF films on some substrates. Significant reductions were found for SiOF films on Al/Si substrates, while little or no change was found for films on TiN/Al/Si, Al/SiO2/Si, or Si substrates. Local chemical analysis of those films which showed F reduction indicated that the F profile was approximately uniform throughout the layer and did not pile-up at the interface. The substrate-dependent thermal instability exhibited by these films suggests the chemical nature or qualities of the substrate may play a role in the F reduction reaction.

More Details
Results 26–28 of 28
Results 26–28 of 28