Publications

Results 1–25 of 178
Skip to search filters

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Physics of Plasmas

Knapp, P.F.; Glinsky, Michael E.; Schaeuble, Marc-Andre S.; Jennings, C.A.; Evans, M.; Gunning, J.; Awe, T.J.; Chandler, Gordon A.; Geissel, Matthias G.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Humane, S.; Klein, B.T.; Mangan, M.; Nagayama, Taisuke N.; Porwitzky, Andrew J.; Ruiz, D.E.; Schmit, P.F.; Slutz, S.A.; Smith, Ian C.; Weis, M.R.; Yager-Elorriaga, David A.; Ampleford, David A.; Beckwith, Kristian B.; Mattsson, Thomas M.; Peterson, Kyle J.; Sinars, Daniel S.

We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.

More Details

Starting-point-independent quantum Monte Carlo calculations of iron oxide

Physical Review B

Townsend, Joshua P.; Pineda Flores, Sergio D.; Clay III, Raymond C.; Mattsson, Thomas M.; Neuscamman, Eric; Zhao, Luning; Cohen, R.E.; Shulenburger, Luke N.

Quantum Monte Carlo (QMC) methods are useful for studies of strongly correlated materials because they are many body in nature and use the physical Hamiltonian. Typical calculations assume as a starting point a wave function constructed from single-particle orbitals obtained from one-body methods, e.g., density functional theory. However, mean-field-derived wave functions can sometimes lead to systematic QMC biases if the mean-field result poorly describes the true ground state. Here, we study the accuracy and flexibility of QMC trial wave functions using variational and fixed-node diffusion QMC estimates of the total spin density and lattice distortion of antiferromagnetic iron oxide (FeO) in the ground state B1 crystal structure. We found that for relatively simple wave functions the predicted lattice distortion was controlled by the choice of single-particle orbitals used to construct the wave function, rather than by subsequent wave function optimization techniques within QMC. By optimizing the orbitals with QMC, we then demonstrate starting-point independence of the trial wave function with respect to the method by which the orbitals were constructed by demonstrating convergence of the energy, spin density, and predicted lattice distortion for two qualitatively different sets of orbitals. The results suggest that orbital optimization is a promising method for accurate many-body calculations of strongly correlated condensed phases.

More Details

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, S.A.; Jennings, C.A.; Ampleford, David A.; Weis, M.R.; Myers, C.E.; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, M.; Knapp, P.F.; Awe, T.J.; Chandler, Gordon A.; Cooper, Gary W.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Lewis, W.E.; Ruiz, C.L.; Ruiz, D.E.; Savage, Mark E.; Schmit, Paul S.; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas M.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Experimental Validation of Dense Plasma Transport Models using the Z-Machine

Knapp, Patrick K.; Beckwith, Kristian B.; Cochrane, Kyle C.; Clay III, Raymond C.; Mattsson, Thomas M.

Mixing of cold, higher-Z elements into the fuel region of an inertial confinement fusion target spoils the fusion burn efficiency. This mixing process is driven by both "turbulent" and "atomic" mixing processes, the latter being modeled through transport corrections to the basic hydrodynamic models. Recently, there has been a surge in the development of dense plasma transport modeling and the associated transport coefficients; however, experimental validation remains in its infancy. To address this gap in our knowledge of interfacial mixing, Sandia National Laboratories is developing a new experimental platform at the Z-facility to investigate plasma transport in dense plasmas that span the entire warm dense matter regime. Specifically, this platform is being developed to measure species transport across a V/CH interface, using an x-ray driven hohlraum to drive the sample to [?] 190eV over 5ns. The heated sample is diagnosed using radiography optimized to measure the distribution of Vanadium perpendicular the interface. In order to interpret measurements made using this experimental platform, modeling tools that incorporate transport effects in strongly coupled plasmas are required. To this end, we utilize new advances in multi-species kinetic theory, collision models applicable to strongly coupled plasmas and modeling of degenerate electron plasmas to develop such a capability. The resulting kinetic transport code has been applied, along with state-of-the-art radiation hydrodynamic codes, to model the experiments. Results from this modeling effort highlight the importance of strong electric fields, which are present in the kinetic transport code, but absent in the radiation hydrodynamics code, in driving interfacial mixing. Synthetic radiography generated from all of these models reveals the ability of experimental diagnostics to distinguish interfacial mixing driven by a range of transport effects. We demonstrate that the spatial and temporal resolution of radiography diagnostics currently available at the Z-facility can distinguish between these different transport effects when multiple (3 [?] 4) radiographs, separated in time ( [?] 2 ns ) with accurate timing are captured per experiment.

More Details

Direct measurements of anode/cathode gap plasma in cylindrically imploding loads on the Z machine

Physics of Plasmas

Porwitzky, Andrew J.; Dolan, Daniel H.; Martin, M.R.; Laity, G.; Lemke, R.W.; Mattsson, Thomas M.

By deploying a photon Doppler velocimetry based plasma diagnostic, we have directly observed low density plasma in the load anode/cathode gap of cylindrically converging pulsed power targets. The arrival of this plasma is temporally correlated with gross current loss and subtle power flow differences between the anode and the cathode. The density is in the range where Hall terms in the electromagnetic equations are relevant, but this physics is lacking in the magnetohydrodynamics codes commonly used to design, analyze, and optimize pulsed power experiments. The present work presents evidence of the importance of physics beyond traditional resistive magnetohydrodynamics for the design of pulsed power targets and drivers.

More Details

Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

Physical Review B

Weck, Philippe F.; Cochrane, Kyle C.; Root, Seth R.; Lane, J.M.; Shulenburger, Luke N.; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas M.; Vogler, Tracy V.

The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

More Details

The electro-thermal stability of tantalum relative to aluminum and titanium in cylindrical liner ablation experiments at 550 kA

Physics of Plasmas

Steiner, Adam M.; Campbell, Paul C.; Yager-Elorriaga, David A.; Cochrane, Kyle C.; Mattsson, Thomas M.; Jordan, Nicholas M.; McBride, Ryan D.; Lau, Y.Y.; Gilgenbach, Ronald M.

Presented are the results from the liner ablation experiments conducted at 550 kA on the Michigan Accelerator for Inductive Z-Pinch Experiments. These experiments were performed to evaluate a hypothesis that the electrothermal instability (ETI) is responsible for the seeding of magnetohydrodynamic instabilities and that the cumulative growth of ETI is primarily dependent on the material-specific ratio of critical temperature to melting temperature. This ratio is lower in refractory metals (e.g., tantalum) than in non-refractory metals (e.g., aluminum or titanium). The experimental observations presented herein reveal that the plasma-vacuum interface is remarkably stable in tantalum liner ablations. This stability is particularly evident when contrasted with the observations from aluminum and titanium experiments. These results are important to various programs in pulsed-power-driven plasma physics that depend on liner implosion stability. Examples include the magnetized liner inertial fusion (MagLIF) program and the cylindrical dynamic material properties program at Sandia National Laboratories, where liner experiments are conducted on the 27-MA Z facility.

More Details
Results 1–25 of 178
Results 1–25 of 178