Publications

18 Results
Skip to search filters

Electrical-Discharge-Machining Contamination Removal from Metal Additively Manufactured Components

Banga, Dhego O.; Chames, Jeffery M.; Yee, Joshua K.; Jankowski, Alan F.

The use of an electrochemical dissolution process is shown to remove the recast layer contamination from the surfaces of electrical-discharge-machining cut components, as well as the interior exposed surfaces of the structure. The solution chemistry, cell potential, and exposure time are all relevant interdependent variables. Optimization of the electrode geometry should be made for each type of component. For the case of Cu-Zn recast contamination of 300-series alloy components, surface composition analysis indicates that complete electrochemical dissolution is achieved using a dilute solution of nitric acid (HNO3). For example, electrochemical dissolution of the Cu-Zn recast is accomplished at 1.2 V cell potential using a 20% nitric solution and an exposure time of 4 h. The use of a nitric acid bath was specifically chosen since it’s chemically compatible and will not degrade the host alloy or the component. In sum, an electrochemically driven dissolution process can be tailored to remove of the recast contamination without affecting the integrity of the host component structure and its dimensional tolerances.

More Details

Effect of Microstructural Bands on the Localized Corrosion of Laser Surface-Melted 316L Stainless Steel

Corrosion

Hwa, Yoon; Kumai, Christopher S.; Yang, Nancy Y.; Yee, Joshua K.; Devine, Thomas M.

The localized corrosion of laser surface melted (LSM) 316L stainless steel is investigated by a combination of potentiodynamic anodic polarization in 0.1 M HCl and microscopic investigation of the initiation and propagation of localized corrosion. The pitting potential of LSM 316L is significantly lower than the pitting potential of wrought 316L. The LSM microstructure is highly banded as a consequence of the high laser power density and high linear energy density. The bands are composed of zones of changing modes of solidification, cycling between very narrow regions of primary austenite solidification and very wide regions of primary ferrite solidification. Pits initiate in the outer edge of each band where the mode of solidification is primary austenite plane front solidification and primary austenite cellular solidification. The primary austenite regions have low chromium concentration (and possibly low molybdenum concentration), which explains their susceptibility to pitting corrosion. The ferrite is enriched in chromium, which explains the absence of pitting in the primary ferrite regions. The presence of the low chromium regions of primary austenite solidification explains the lower pitting resistance of LSM 316L relative to wrought 316L. The influence of banding on localized corrosion is applicable to other rapidly solidified processes such as additive manufacturing.

More Details

Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel

Journal of Materials Science and Technology

Hwa, Yoon; Kumai, Christopher S.; Devine, Thomas M.; Yang, Nancy Y.; Yee, Joshua K.; Hardwick, Ryan; Burgmann, Kai

The microstructures of 316 L stainless steel created by rapid solidification are investigated by comparing the similar microstructures of individual hatches of directed energy deposition additive manufacturing (DED-AM) and those of single, laser surface-melted tracks formed on a solid plate. High recoil pressure, which is exponentially dependent on the laser beam power density, induces convection of the melt pool, which causes formation of microstructural bands in the as-solidified microstructure. The microstructural bands are associated with changes in the chromium concentration and are a significant component of the inhomogeneous microstructure of DED-AM.

More Details

Mechanical properties of 3-D LENS and PBF printed stainless steel 316L prototypes

Conference Proceedings of the Society for Experimental Mechanics Series

Lu, Wei-Yang L.; Yang, Nancy Y.; Yee, Joshua K.; Connelly, Kevin C.

Laser Engineered Net Shaping (LENS) and Powder Bed Fusion (PBF) are 3-D additive manufacturing (AM) processes. They are capable of printing metal parts with complex geometries and dimensions effectively. Studies have shown that AM processes create metals with distinctive microstructure features and material properties, which are highly dependent on the processing parameters. The mechanical properties of an AM material may appear to be similar to the corresponding wrought material in some way. This investigation focuses on the relationships among AM process, microstructure features, and material properties. The study involves several AM SS316L components made from 3D LENS and PBF printing. Specimens were taken from different locations and orientations of AM components to obtain the associated tensile properties, including yield, strength, and ductility, and to conduct microstructure analyses.

More Details
18 Results
18 Results