Publications

12 Results
Skip to search filters

Refractive Imaging of Air Shock Above Microscale Defects in Pentaerythritol Tetranitrate (PETN) Films

Propellants, Explosives, Pyrotechnics

Peguero II, Julio C.; Forrest, Eric C.; Knepper, Robert; Hargather, Michael J.; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.

Physical vapor deposition (PVD) of high explosives can produce energetic samples with unique microstructure and morphology compared to traditional powder processing techniques, but challenges may exist in fabricating explosive films without defects. Deposition conditions and substrate material may promote microcracking and other defects in the explosive films. In this study, we investigate effects of engineered microscale defects (gaps) on detonation propagation and failure for pentaerythritol tetranitrate (PETN) films using ultra-high-speed refractive imaging and hydrocode modelling. Observations of the air shock above the gap reveal significant instabilities during gap crossing and re-ignition.

More Details

Crystal and Electronic Structures of A2NaIO6 Periodate Double Perovskites (A = Sr, Ca, Ba): Candidate Wasteforms for I-129 Immobilization

Inorganic Chemistry

O?Sullivan, Sarah E.; Montoya, Eduardo M.; Sun, Shi K.; Vasiliauskas, Jonathan G.; Kirk, Cameron K.; Dixon Wilkins, Malin C.; Weck, Philippe F.; Kim, Eunja K.; Knight, Kevin S.; Hyatt, Neil C.

The synthesis, structure, and thermal stability of the periodate double perovskites A2NaIO6 (A= Ba, Sr, Ca) were investigated in the context of potential application for the immobilization of radioiodine. A combination of X-ray diffraction and neutron diffraction, Raman spectroscopy, and DFT simulations were applied to determine accurate crystal structures of these compounds and understand their relative stability. The compounds were found to exhibit rock-salt ordering of Na and I on the perovskite B-site; Ba2NaIO6 was found to adopt the Fm-3m aristotype structure, whereas Sr2NaIO6 and Ca2NaIO6 adopt the P21/n hettotype structure, characterized by cooperative octahedral tilting. DFT simulations determined the Fm-3m and P21/n structures of Ba2NaIO6 to be energetically degenerate at room temperature, whereas diffraction and spectroscopy data evidence only the presence of the Fm-3m phase at room temperature, which may imply an incipient phase transition for this compound. The periodate double perovskites were found to exhibit remarkable thermal stability, with Ba2NaIO6 only decomposing above 1050 °C in air, which is apparently the highest recorded decomposition temperature so far recorded for any iodine bearing compound. As such, these compounds offer some potential for application in the immobilization of iodine-129, from nuclear fuel reprocessing, with an iodine incorporation rate of 25–40 wt%. The synthesis of these compounds, elaborated here, is also compatible with both current conventional and future advanced processes for iodine recovery from the dissolver off-gas.

More Details

Investigating Typical Additive Manufacturing Defect Geometries using Physical Vapor Deposition Explosives as a Model System

AIP Conference Proceedings

O'Grady, Caitlin H.; Marquez, Michael P.; Rupper, Stephen G.; Vasiliauskas, Jonathan G.; Knepper, Robert; Son, Steven F.; Tappan, Alexander S.

Additive Manufacturing (AM) techniques are increasingly being utilized for energetic material processes and research. Energetic material samples fabricated using these techniques can develop artifacts or defects during the manufacturing process. In this work, we use Physical Vapor Deposition (PVD) of explosive samples as a model system to investigate the effects of typical AM artifact or defect geometries on detonation propagation. PVD techniques allow for precise control of geometry to simulate typical AM artifacts or defects embedded into explosive samples. This experiment specifically investigates triangular and diamond-shaped artifacts that can result during direct-ink-writing (Robocasting). Samples were prepared with different sizes of voids embedded into the films. An ultra-high-speed framing camera and streak camera were used to view the samples under dynamic shock loading. It was determined that both geometry and size of the defects have a significant impact on the detonation front.

More Details

Safety Review Board review of explosive pressing initiation event

Kaneshige, Michael J.; Richardson, Duane R.; Rosenberg, David; Anderson, Mark U.; Vasiliauskas, Jonathan G.

On June 30, 2020, a 0.87 gram PETN charge being pressed in the Rapid Prototyping Facility (RPF), unexpectedly initiated, resulting in destruction of the pressing fixture but no injuries or facility damage. In response, the Safety Review Board (SRB) met on Aug. 13, 2020 and Oct. 1, 2020 to review information collected following the incident, consider likely direct causes, and form recommendations.

More Details

Posters for AA/CE Reception

Kuether, Robert J.; Allensworth, Brooke M.; Backer, Adam B.; Chen, Elton Y.; Dingreville, Remi P.; Forrest, Eric C.; Knepper, Robert; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.; Grant, Michael J.; Atencio, Lauren C.; Hipple, Tyler J.; Maes, Danae M.; Timlin, Jerilyn A.; Ma, Tian J.; Garcia, Rudy J.; Danford, Forest L.; Patrizi, Laura P.; Galasso, Jennifer G.; Draelos, Timothy J.; Gunda, Thushara G.; Venezuela, Otoniel V.; Brooks, Wesley A.; Anthony, Stephen M.; Carson, Bryan C.; Reeves, Michael J.; Roach, Matthew R.; Maines, Erin M.; Lavin, Judith M.; Whetten, Shaun R.; Swiler, Laura P.

Abstract not provided.

12 Results
12 Results