Publications

Results 1–25 of 40
Skip to search filters

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Physics of Plasmas

Knapp, P.F.; Glinsky, Michael E.; Schaeuble, Marc-Andre S.; Jennings, C.A.; Evans, M.; Gunning, J.; Awe, T.J.; Chandler, Gordon A.; Geissel, Matthias G.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Humane, S.; Klein, B.T.; Mangan, M.; Nagayama, Taisuke N.; Porwitzky, Andrew J.; Ruiz, D.E.; Schmit, P.F.; Slutz, S.A.; Smith, Ian C.; Weis, M.R.; Yager-Elorriaga, David A.; Ampleford, David A.; Beckwith, Kristian B.; Mattsson, Thomas M.; Peterson, Kyle J.; Sinars, Daniel S.

We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.

More Details

Determining the electrical conductivity of metals using the 2 MA Thor pulsed power driver

Review of Scientific Instruments

Porwitzky, Andrew J.; Cochrane, Kyle C.; Stoltzfus, Brian S.

We present the development of a pulsed power experimental technique to infer the electrical conductivity of metals from ambient to high energy density conditions. The method is implemented on Thor, a moderate scale (1-2 MA) pulsed power driver. The electrical conductivity of copper at elevated temperature (>4000 K) and pressure (>10 GPa) is determined, and a new tabular material model is developed, guided by density functional theory, which preserves agreement with existing experimental data. Minor modifications (<10%) are found to be necessary to the previous Lee-More-Desjarlais model isotherms in the vicinity of the melt transition in order to account for observed discrepancies with the new experimental data. An analytical model for magnetic direct drive flyer acceleration and Joule heating induced vaporization based on the Tsiolkovsky "rocket equation"is presented to assess sensitivity of the method to minor changes in electrical conductivity.

More Details

Equation of State Measurements on Iron Near the Melting Curve at Planetary Core Conditions by Shock and Ramp Compressions

Journal of Geophysical Research: Solid Earth

Grant, S.C.; Ao, Tommy A.; Seagle, Christopher T.; Porwitzky, Andrew J.; Davis, Jean-Paul D.; Cochrane, Kyle C.; Dolan, Daniel H.; Lin, J.F.; Ditmire, T.; Bernstein, A.C.

The outer core of the Earth is composed primarily of liquid iron, and the inner core boundary is governed by the intersection of the melt line and the geotherm. While there are many studies on the thermodynamic equation of state for solid iron, the equation of state of liquid iron is relatively unexplored. We use dynamic compression to diagnose the high-pressure liquid equation of state of iron by utilizing the shock-ramp capability at Sandia National Laboratories’ Z-Machine. This technique enables measurements of material states off the Hugoniot by initially shocking samples and subsequently driving a further, shockless compression. Planetary studies benefit greatly from isentropic, off-Hugoniot experiments since they can cover pressure-temperature (P-T) conditions that are close to adiabatic profiles found in planetary interiors. We used this method to drive iron to P-T conditions similar to those of the Earth’s outer-inner core boundary, along an elevated-temperature isentrope in the liquid from 275 GPa to 400 GPa. We derive the equation of state using a hybrid backward integration – forward Lagrangian technique on particle velocity traces to determine the pressure-density history of the sample. Our results are in excellent agreement with SESAME 92141, a previously published equation of state table. With our data and previous experimental data on liquid iron we provide new information on the iron melting line and derive new parameters for a Vinet-based equation of state. The table and our parameterized equation of state are applied to provide an updated means of modeling the pressure, mass, and density of liquid iron cores in exoplanetary interiors.

More Details

Pulsed power accelerator surface Joule heating models

Physics of Plasmas

Robinson, Allen C.; Porwitzky, Andrew J.

Understanding the effects of contaminant plasmas generated within the Z machine at Sandia is critical to understanding current loss mechanisms. The plasmas are generated at the accelerator electrode surfaces and include desorbed species found in the surface and substrate of the walls. These desorbed species can become ionized. The timing and location of contaminant species desorbed from the wall surface depend non-linearly on the local surface temperature. For accurate modeling, it is necessary to utilize wall heating models to estimate the amount and timing of material desorption. One of these heating mechanisms is Joule heating. We propose several extended semi-analytic magnetic diffusion heating models for computing surface Joule heating and demonstrate their effects for several representative current histories. We quantitatively assess under what circumstances these extensions to classical formulas may provide a validatable improvement to the understanding of contaminant desorption timing.

More Details

Recent Diagnostic Platform Accomplishments for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator

Laity, George R.; Aragon, Carlos A.; Bennett, Nichelle L.; Bliss, David E.; Dolan, Daniel H.; Fierro, Andrew S.; Gomez, Matthew R.; Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Johnston, Mark D.; Kossow, Michael R.; Lamppa, Derek C.; Martin, Matthew; Patel, Sonal P.; Porwitzky, Andrew J.; Robinson, Allen C.; Rose, David V.; VanDevender, Pace V.; Waisman, Eduardo M.; Webb, Timothy J.; Welch, Dale R.; Rochau, G.A.; Savage, Mark E.; Stygar, William S.; White, William M.; Sinars, Daniel S.; Cuneo, M.E.

Abstract not provided.

Shock-ramp compression of tin near the melt line

AIP Conference Proceedings

Seagle, Christopher T.; Porwitzky, Andrew J.

Tin has been shock compressed to ∼69 GPa on the Hugoniot using Sandia's Z Accelerator. A shockless compression wave closely followed the shock wave to ramp compress the shocked tin and probe a high temperature quasi-isentrope near the melt line. A new hybrid backwards integration - Lagrangian analysis routine was applied to the velocity waveforms to obtain the Lagrangian sound velocity of the tin as a function of particle velocity. Surprisingly, an elastic wave was observed on initial compression from the shock state. The presence of the elastic wave indicates tin possess a small but finite strength at this shock pressure, strongly indicating a (mostly) solid state. High fidelity shock Hugoniot measurements on tin sound velocities in this stress range may be required to refine the shock melting stress for pure tin.

More Details

Development of the Flexo XMHD Code

Beckwith, Kristian B.; Beckwith, Kristian B.; Beckwith, Kristian B.; Beckwith, Kristian B.; Bond, Stephen D.; Bond, Stephen D.; Bond, Stephen D.; Bond, Stephen D.; Granzow, Brian N.; Granzow, Brian N.; Granzow, Brian N.; Granzow, Brian N.; Jennings, Christopher A.; Jennings, Christopher A.; Jennings, Christopher A.; Jennings, Christopher A.; Martin, Matthew; Martin, Matthew; Martin, Matthew; Martin, Matthew; Porwitzky, Andrew J.; Porwitzky, Andrew J.; Porwitzky, Andrew J.; Porwitzky, Andrew J.; Stagg, Alan K.; Stagg, Alan K.; Stagg, Alan K.; Stagg, Alan K.; Voth, Thomas E.; Voth, Thomas E.; Voth, Thomas E.; Voth, Thomas E.

Abstract not provided.

Results 1–25 of 40
Results 1–25 of 40