Publications Details

Publications / Conference

Considerations in modeling groundwater inflow to underground respositories

Christian-Frear, T.

Groundwater in and around underground radioactive waste repositories has several potential effects on repository performance. Repository excavation produces conditions where the repository is underpressured relative to the surrounding host rock, resulting in groundwater inflow to the repository. The presence of groundwater has been shown to enhance gas generation from emplaced waste forms, which expedites repository pressurization. Repository pressurization results in an increased driving force for dissolved radionuclide movement away from the repository. Repository excavation also produces a zone surrounding the repository having disturbed hydrologic and geochemical properties. Within the disturbed rock zone (DRZ), intrinsic permeability and porosity change over time due to the formation of microfractures and grain boundary dilation. Additionally, elastic and inelastic changes in pore volume may cause variation in the near-field fluid pressure and fluid saturation distributions that influence groundwater flow toward the repository excavation. Increased permeability, decreased pore-fluid pressure, and partially saturated conditions in the DRZ contribute to enhancing potential release pathways away from the repository. It is important for a repository performance assessment to consider chemical processes, hydrologic processes, as well as the complex coupling between these processes.