Publications

Results 9076–9100 of 9,998

Search results

Jump to search filters

Surface effects in semiconductor interstitial formation energies

Sandia journal manuscript; Not yet accepted for publication

Wills, Ann E.; Wixom, Ryan R.

In this work, we examine the formation energies of interstitials in semiconductors obtained with four different pure functionals. Explicitely we investigate three silicon self-interstitials. All functionals give the same trend among those interstitials; the lowest energy being for formation of the <110>-split, somewhat higher energy for the formation of the hexagonal interstitial, while highest energy among the three is obtained for the meta-stable tetragonal configuration. However, the value for the formation energy for a specific interstitial differs substantially in calculations using different functionals. It is shown that the main contribution to these differences is stemming from the functionals different surface intrinsic errors. We also discuss the puzzle that the values obtained with the surface intrisic error free AM05 functional (Armiento and Mattsson, Phys. Rev. B 72, 085108 (2006)) gives values substantially lower than Quantum Monte Carlo results

More Details

Macro-meso-microsystems integration in LTCC : LDRD report

Rohde, Steven B.; Okandan, Murat O.; Pfeifer, Kent B.; De Smet, Dennis J.; Patel, Kamlesh P.; Ho, Clifford K.; Nordquist, Christopher N.; Walker, Charles A.; Rohrer, Brandon R.; Buerger, Stephen B.; Turner, Timothy S.; Wroblewski, Brian W.

Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modules using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.

More Details
Results 9076–9100 of 9,998
Results 9076–9100 of 9,998