Publications

Results 6551–6575 of 9,998

Search results

Jump to search filters

Reducing uncertainty in high-resolution sea ice models

Peterson, Kara J.; Bochev, Pavel B.

Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

More Details

Spatially varying embedded stochastic galerkin methods for steady-state PDEs

Cyr, Eric C.

Existing discretizations for stochastic PDEs, based on a tensor product between the deterministic basis and the stochastic basis, treat the required resolution of uncertainty as uniform across the physical domain. However, solutions to many PDEs of interest exhibit spatially localized features that may result in uncertainty being severely over or under-resolved by existing discretizations. In this report, we explore the mechanics and accuracy of using a spatially varying stochastic expansion. This is achieved through an adaptive refinement algorithm where simple error estimates are used to independently drive refinement of the stochastic basis at each point in the physical domain. Results are presented comparing the accuracy of the adaptive techinque to the accuracy achieved using uniform refinement.

More Details

Design issues in the semantics and scheduling of asynchronous tasks

Olivier, Stephen L.

The asynchronous task model serves as a useful vehicle for shared memory parallel programming, particularly on multicore and manycore processors. As adoption of model among programmers has increased, support has emerged for the integration of task parallel language constructs into mainstream programming languages, e.g., C and C++. This paper examines some of the design decisions in Cilk and OpenMP concerning semantics and scheduling of asynchronous tasks with the aim of informing the efforts of committees considering language integration, as well as developers of new task parallel languages and libraries.

More Details
Results 6551–6575 of 9,998
Results 6551–6575 of 9,998