Publications

Results 5976–6000 of 9,998

Search results

Jump to search filters

Fault Survivability of Lightweight Operating Systems for exascale

Ferreira, Kurt B.

Concern is growing in the High-Performance Computing community regarding the reliability of proposed exascale systems. Current research has shown that the expected reliability of these machines will greatly reduce their scalability. In constrast to current fault tolerance methods whose reliability focus is only the application, this project investigates the benefits integrating reliability mechcanisms in the operating system and runtime, as well as the appli- cation. More specifically, this project has three broad contributions in the field: First, using failure logs from current leadership-class high-performance computing systems, we outline the failures common on these large-scale systems. Second, we describe a novel memory pro- tection mechcanism capable of protecting common observed failures that uses the similarity inherrant in many OS and applications state, thereby reducing overheads. Finally, using an analogy with OS jitter, we develop a highly effecient simulator capable predicting the performance of resilience methods at the scales expected for future extreme-scale systems.

More Details

Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications

Brandt, James M.; Devine, Karen D.; Gentile, Ann C.; Leung, Vitus J.; Olivier, Stephen L.; Laros, James H.; Rajamanickam, Sivasankaran R.; Bunde, David P.; Deveci, Mehmet; Catalyurek, Umit V.

As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].

More Details

FY14 Codesign Milestone Summary

Hoekstra, Robert J.; Barrett, Richard F.; Howell, Louis; Daniel, David

This milestone was the 2nd in a series of Tri-Lab Co-Design L2 milestones supporting ‘Co-Design’ efforts in the ASC program. It is a crucial step towards evaluating the effectiveness of proxy applications in exploring code performance on next generation architectures. All three labs evaluated the performance of 2 proxy applications on modern architectures and/or testbeds for pre-production hardware. The results are captured in this document as well as annotated presentations from all 3 laboratories.

More Details

Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

Safta, Cosmin S.; Najm, H.N.; Phipps, Eric T.

Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

More Details

Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report

Thompson, Aidan P.; Schultz, Peter A.; Crozier, Paul C.; Moore, Stan G.; Swiler, Laura P.; Stephens, John A.; Trott, Christian R.; Foiles, Stephen M.; Tucker, Garritt J.

This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.

More Details

Exploring Heterogeneous Multicore Architectures for Advanced Embedded Uncertainty Quantification

Phipps, Eric T.; Edwards, Harold C.; Hu, Jonathan J.

We explore rearrangements of classical uncertainty quantification methods with the aim of achieving higher aggregate performance for uncertainty quantification calculations on emerging multicore and many core architectures. We show a rearrangement of the stochastic Galerkin method leads to improved performance and scalability on several computational architectures whereby uncertainty information is propagated at the lowest levels of the simulation code improving memory access patterns, exposing new dimensions of fine grained parallelism, and reducing communication. We also develop a general framework for implementing such rearrangements for a diverse set of uncertainty quantification algorithms as well as computational simulation codes to which they are applied.

More Details

Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

Siefert, Christopher S.; Bochev, Pavel B.; Kramer, Richard M.; Voth, Thomas E.; Cox, James C.

Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

More Details

Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

Liu, Zhen L.; Safta, Cosmin S.; Sargsyan, Khachik S.; Najm, H.N.; van Bloemen Waanders, Bart G.; LaFranchi, Brian L.; Ivey, Mark D.; Schrader, Paul E.; Michelsen, Hope A.; Bambha, Ray B.

In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF assimilated meteorology fields, making it possible to perform a hybrid simulation, in which the Eulerian model (CMAQ) can be used to compute the initial condi- tion needed by the Lagrangian model, while the source-receptor relationships for a large state vector can be efficiently computed using the Lagrangian model in its backward mode. In ad- dition, CMAQ has a complete treatment of atmospheric chemistry of a suite of traditional air pollutants, many of which could help attribute GHGs from different sources. The inference of emissions sources using atmospheric observations is cast as a Bayesian model calibration problem, which is solved using a variety of Bayesian techniques, such as the bias-enhanced Bayesian inference algorithm, which accounts for the intrinsic model deficiency, Polynomial Chaos Expansion to accelerate model evaluation and Markov Chain Monte Carlo sampling, and Karhunen-Lo %60 eve (KL) Expansion to reduce the dimensionality of the state space. We have established an atmospheric measurement site in Livermore, CA and are collect- ing continuous measurements of CO2 , CH4 and other species that are typically co-emitted with these GHGs. Measurements of co-emitted species can assist in attributing the GHGs to different emissions sectors. Automatic calibrations using traceable standards are performed routinely for the gas-phase measurements. We are also collecting standard meteorological data at the Livermore site as well as planetary boundary height measurements using a ceilometer. The location of the measurement site is well suited to sample air transported between the San Francisco Bay area and the California Central Valley.

More Details
Results 5976–6000 of 9,998
Results 5976–6000 of 9,998